Metamath Proof Explorer


Theorem dignn0flhalf

Description: The digits of the rounded half of a nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 7-Jun-2010)

Ref Expression
Assertion dignn0flhalf A2I0I+1digit2A=Idigit2A2

Proof

Step Hyp Ref Expression
1 eluzge2nn0 A2A0
2 nn0eo A0A20A+120
3 1 2 syl A2A20A+120
4 dignn0ehalf A20A0I0I+1digit2A=Idigit2A2
5 1 4 syl3an2 A20A2I0I+1digit2A=Idigit2A2
6 eluzelz A2A
7 nn0z A20A2
8 zefldiv2 AA2A2=A2
9 6 7 8 syl2anr A20A2A2=A2
10 9 eqcomd A20A2A2=A2
11 10 3adant3 A20A2I0A2=A2
12 11 oveq2d A20A2I0Idigit2A2=Idigit2A2
13 5 12 eqtrd A20A2I0I+1digit2A=Idigit2A2
14 13 3exp A20A2I0I+1digit2A=Idigit2A2
15 6 3ad2ant2 A+120A2I0A
16 simp2 A+120A2I0A2
17 simp1 A+120A2I0A+120
18 nno A2A+120A12
19 16 17 18 syl2anc A+120A2I0A12
20 simp3 A+120A2I0I0
21 dignn0flhalflem2 AA12I0A2I+1=A22I
22 15 19 20 21 syl3anc A+120A2I0A2I+1=A22I
23 22 oveq1d A+120A2I0A2I+1mod2=A22Imod2
24 2nn 2
25 24 a1i A+120A2I02
26 peano2nn0 I0I+10
27 26 3ad2ant3 A+120A2I0I+10
28 nn0rp0 A0A0+∞
29 1 28 syl A2A0+∞
30 29 3ad2ant2 A+120A2I0A0+∞
31 nn0digval 2I+10A0+∞I+1digit2A=A2I+1mod2
32 25 27 30 31 syl3anc A+120A2I0I+1digit2A=A2I+1mod2
33 eluzelre A2A
34 33 rehalfcld A2A2
35 1 nn0ge0d A20A
36 2re 2
37 2pos 0<2
38 36 37 pm3.2i 20<2
39 38 a1i A220<2
40 divge0 A0A20<20A2
41 33 35 39 40 syl21anc A20A2
42 flge0nn0 A20A2A20
43 34 41 42 syl2anc A2A20
44 43 3ad2ant2 A+120A2I0A20
45 nn0rp0 A20A20+∞
46 44 45 syl A+120A2I0A20+∞
47 nn0digval 2I0A20+∞Idigit2A2=A22Imod2
48 25 20 46 47 syl3anc A+120A2I0Idigit2A2=A22Imod2
49 23 32 48 3eqtr4d A+120A2I0I+1digit2A=Idigit2A2
50 49 3exp A+120A2I0I+1digit2A=Idigit2A2
51 14 50 jaoi A20A+120A2I0I+1digit2A=Idigit2A2
52 3 51 mpcom A2I0I+1digit2A=Idigit2A2
53 52 imp A2I0I+1digit2A=Idigit2A2