Metamath Proof Explorer


Theorem dihglblem2aN

Description: Lemma for isomorphism H of a GLB. (Contributed by NM, 19-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem.b B=BaseK
dihglblem.l ˙=K
dihglblem.m ˙=meetK
dihglblem.g G=glbK
dihglblem.h H=LHypK
dihglblem.t T=uB|vSu=v˙W
Assertion dihglblem2aN KHLWHSBST

Proof

Step Hyp Ref Expression
1 dihglblem.b B=BaseK
2 dihglblem.l ˙=K
3 dihglblem.m ˙=meetK
4 dihglblem.g G=glbK
5 dihglblem.h H=LHypK
6 dihglblem.t T=uB|vSu=v˙W
7 6 a1i KHLWHSBST=uB|vSu=v˙W
8 simprr KHLWHSBSS
9 n0 SzzS
10 8 9 sylib KHLWHSBSzzS
11 hllat KHLKLat
12 11 ad3antrrr KHLWHSBSzSKLat
13 simplrl KHLWHSBSzSSB
14 simpr KHLWHSBSzSzS
15 13 14 sseldd KHLWHSBSzSzB
16 1 5 lhpbase WHWB
17 16 ad3antlr KHLWHSBSzSWB
18 1 3 latmcl KLatzBWBz˙WB
19 12 15 17 18 syl3anc KHLWHSBSzSz˙WB
20 eqidd KHLWHSBSzSz˙W=z˙W
21 oveq1 v=zv˙W=z˙W
22 21 rspceeqv zSz˙W=z˙WvSz˙W=v˙W
23 14 20 22 syl2anc KHLWHSBSzSvSz˙W=v˙W
24 ovex z˙WV
25 eleq1 w=z˙WwuB|vSu=v˙Wz˙WuB|vSu=v˙W
26 eqeq1 u=z˙Wu=v˙Wz˙W=v˙W
27 26 rexbidv u=z˙WvSu=v˙WvSz˙W=v˙W
28 27 elrab z˙WuB|vSu=v˙Wz˙WBvSz˙W=v˙W
29 25 28 bitrdi w=z˙WwuB|vSu=v˙Wz˙WBvSz˙W=v˙W
30 24 29 spcev z˙WBvSz˙W=v˙WwwuB|vSu=v˙W
31 19 23 30 syl2anc KHLWHSBSzSwwuB|vSu=v˙W
32 n0 uB|vSu=v˙WwwuB|vSu=v˙W
33 31 32 sylibr KHLWHSBSzSuB|vSu=v˙W
34 10 33 exlimddv KHLWHSBSuB|vSu=v˙W
35 7 34 eqnetrd KHLWHSBST