Description: Lemma for isomorphism H of a GLB. (Contributed by NM, 19-Mar-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihglblem.b | |
|
dihglblem.l | |
||
dihglblem.m | |
||
dihglblem.g | |
||
dihglblem.h | |
||
dihglblem.t | |
||
Assertion | dihglblem2aN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihglblem.b | |
|
2 | dihglblem.l | |
|
3 | dihglblem.m | |
|
4 | dihglblem.g | |
|
5 | dihglblem.h | |
|
6 | dihglblem.t | |
|
7 | 6 | a1i | |
8 | simprr | |
|
9 | n0 | |
|
10 | 8 9 | sylib | |
11 | hllat | |
|
12 | 11 | ad3antrrr | |
13 | simplrl | |
|
14 | simpr | |
|
15 | 13 14 | sseldd | |
16 | 1 5 | lhpbase | |
17 | 16 | ad3antlr | |
18 | 1 3 | latmcl | |
19 | 12 15 17 18 | syl3anc | |
20 | eqidd | |
|
21 | oveq1 | |
|
22 | 21 | rspceeqv | |
23 | 14 20 22 | syl2anc | |
24 | ovex | |
|
25 | eleq1 | |
|
26 | eqeq1 | |
|
27 | 26 | rexbidv | |
28 | 27 | elrab | |
29 | 25 28 | bitrdi | |
30 | 24 29 | spcev | |
31 | 19 23 30 | syl2anc | |
32 | n0 | |
|
33 | 31 32 | sylibr | |
34 | 10 33 | exlimddv | |
35 | 7 34 | eqnetrd | |