Metamath Proof Explorer


Theorem dihmeetlem9N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem9.b B=BaseK
dihmeetlem9.l ˙=K
dihmeetlem9.h H=LHypK
dihmeetlem9.j ˙=joinK
dihmeetlem9.m ˙=meetK
dihmeetlem9.a A=AtomsK
dihmeetlem9.u U=DVecHKW
dihmeetlem9.s ˙=LSSumU
dihmeetlem9.i I=DIsoHKW
Assertion dihmeetlem9N KHLWHXBYBpAIp˙IX˙YIY=IX˙Y˙IpIY

Proof

Step Hyp Ref Expression
1 dihmeetlem9.b B=BaseK
2 dihmeetlem9.l ˙=K
3 dihmeetlem9.h H=LHypK
4 dihmeetlem9.j ˙=joinK
5 dihmeetlem9.m ˙=meetK
6 dihmeetlem9.a A=AtomsK
7 dihmeetlem9.u U=DVecHKW
8 dihmeetlem9.s ˙=LSSumU
9 dihmeetlem9.i I=DIsoHKW
10 simp1 KHLWHXBYBpAKHLWH
11 3 7 10 dvhlmod KHLWHXBYBpAULMod
12 eqid LSubSpU=LSubSpU
13 12 lsssssubg ULModLSubSpUSubGrpU
14 11 13 syl KHLWHXBYBpALSubSpUSubGrpU
15 simp1l KHLWHXBYBpAKHL
16 15 hllatd KHLWHXBYBpAKLat
17 simp2l KHLWHXBYBpAXB
18 simp2r KHLWHXBYBpAYB
19 1 5 latmcl KLatXBYBX˙YB
20 16 17 18 19 syl3anc KHLWHXBYBpAX˙YB
21 1 3 9 7 12 dihlss KHLWHX˙YBIX˙YLSubSpU
22 10 20 21 syl2anc KHLWHXBYBpAIX˙YLSubSpU
23 14 22 sseldd KHLWHXBYBpAIX˙YSubGrpU
24 1 6 atbase pApB
25 24 3ad2ant3 KHLWHXBYBpApB
26 1 3 9 7 12 dihlss KHLWHpBIpLSubSpU
27 10 25 26 syl2anc KHLWHXBYBpAIpLSubSpU
28 14 27 sseldd KHLWHXBYBpAIpSubGrpU
29 1 3 9 7 12 dihlss KHLWHYBIYLSubSpU
30 10 18 29 syl2anc KHLWHXBYBpAIYLSubSpU
31 14 30 sseldd KHLWHXBYBpAIYSubGrpU
32 1 2 5 latmle2 KLatXBYBX˙Y˙Y
33 16 17 18 32 syl3anc KHLWHXBYBpAX˙Y˙Y
34 1 2 3 9 dihord KHLWHX˙YBYBIX˙YIYX˙Y˙Y
35 10 20 18 34 syl3anc KHLWHXBYBpAIX˙YIYX˙Y˙Y
36 33 35 mpbird KHLWHXBYBpAIX˙YIY
37 8 lsmmod IX˙YSubGrpUIpSubGrpUIYSubGrpUIX˙YIYIX˙Y˙IpIY=IX˙Y˙IpIY
38 23 28 31 36 37 syl31anc KHLWHXBYBpAIX˙Y˙IpIY=IX˙Y˙IpIY
39 lmodabl ULModUAbel
40 11 39 syl KHLWHXBYBpAUAbel
41 8 lsmcom UAbelIX˙YSubGrpUIpSubGrpUIX˙Y˙Ip=Ip˙IX˙Y
42 40 23 28 41 syl3anc KHLWHXBYBpAIX˙Y˙Ip=Ip˙IX˙Y
43 42 ineq1d KHLWHXBYBpAIX˙Y˙IpIY=Ip˙IX˙YIY
44 38 43 eqtr2d KHLWHXBYBpAIp˙IX˙YIY=IX˙Y˙IpIY