Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihmeetlem9.b | |
|
dihmeetlem9.l | |
||
dihmeetlem9.h | |
||
dihmeetlem9.j | |
||
dihmeetlem9.m | |
||
dihmeetlem9.a | |
||
dihmeetlem9.u | |
||
dihmeetlem9.s | |
||
dihmeetlem9.i | |
||
Assertion | dihmeetlem9N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeetlem9.b | |
|
2 | dihmeetlem9.l | |
|
3 | dihmeetlem9.h | |
|
4 | dihmeetlem9.j | |
|
5 | dihmeetlem9.m | |
|
6 | dihmeetlem9.a | |
|
7 | dihmeetlem9.u | |
|
8 | dihmeetlem9.s | |
|
9 | dihmeetlem9.i | |
|
10 | simp1 | |
|
11 | 3 7 10 | dvhlmod | |
12 | eqid | |
|
13 | 12 | lsssssubg | |
14 | 11 13 | syl | |
15 | simp1l | |
|
16 | 15 | hllatd | |
17 | simp2l | |
|
18 | simp2r | |
|
19 | 1 5 | latmcl | |
20 | 16 17 18 19 | syl3anc | |
21 | 1 3 9 7 12 | dihlss | |
22 | 10 20 21 | syl2anc | |
23 | 14 22 | sseldd | |
24 | 1 6 | atbase | |
25 | 24 | 3ad2ant3 | |
26 | 1 3 9 7 12 | dihlss | |
27 | 10 25 26 | syl2anc | |
28 | 14 27 | sseldd | |
29 | 1 3 9 7 12 | dihlss | |
30 | 10 18 29 | syl2anc | |
31 | 14 30 | sseldd | |
32 | 1 2 5 | latmle2 | |
33 | 16 17 18 32 | syl3anc | |
34 | 1 2 3 9 | dihord | |
35 | 10 20 18 34 | syl3anc | |
36 | 33 35 | mpbird | |
37 | 8 | lsmmod | |
38 | 23 28 31 36 37 | syl31anc | |
39 | lmodabl | |
|
40 | 11 39 | syl | |
41 | 8 | lsmcom | |
42 | 40 23 28 41 | syl3anc | |
43 | 42 | ineq1d | |
44 | 38 43 | eqtr2d | |