Description: If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | diophun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldiophelnn0 | |
|
2 | nnex | |
|
3 | 2 | jctr | |
4 | 1z | |
|
5 | nnuz | |
|
6 | 5 | uzinf | |
7 | 4 6 | ax-mp | |
8 | elfznn | |
|
9 | 8 | ssriv | |
10 | 7 9 | pm3.2i | |
11 | eldioph2b | |
|
12 | eldioph2b | |
|
13 | 11 12 | anbi12d | |
14 | 3 10 13 | sylancl | |
15 | reeanv | |
|
16 | unab | |
|
17 | r19.43 | |
|
18 | andi | |
|
19 | zex | |
|
20 | nn0ssz | |
|
21 | mapss | |
|
22 | 19 20 21 | mp2an | |
23 | 22 | sseli | |
24 | 23 | adantl | |
25 | fveq2 | |
|
26 | fveq2 | |
|
27 | 25 26 | oveq12d | |
28 | eqid | |
|
29 | ovex | |
|
30 | 27 28 29 | fvmpt | |
31 | 24 30 | syl | |
32 | 31 | eqeq1d | |
33 | simplrl | |
|
34 | mzpf | |
|
35 | 33 34 | syl | |
36 | 35 24 | ffvelcdmd | |
37 | 36 | zcnd | |
38 | simplrr | |
|
39 | mzpf | |
|
40 | 38 39 | syl | |
41 | 40 24 | ffvelcdmd | |
42 | 41 | zcnd | |
43 | 37 42 | mul0ord | |
44 | 32 43 | bitr2d | |
45 | 44 | anbi2d | |
46 | 18 45 | bitr3id | |
47 | 46 | rexbidva | |
48 | 17 47 | bitr3id | |
49 | 48 | abbidv | |
50 | 16 49 | eqtrid | |
51 | simpl | |
|
52 | 2 9 | pm3.2i | |
53 | 52 | a1i | |
54 | simprl | |
|
55 | 54 34 | syl | |
56 | 55 | feqmptd | |
57 | 56 54 | eqeltrrd | |
58 | simprr | |
|
59 | 58 39 | syl | |
60 | 59 | feqmptd | |
61 | 60 58 | eqeltrrd | |
62 | mzpmulmpt | |
|
63 | 57 61 62 | syl2anc | |
64 | eldioph2 | |
|
65 | 51 53 63 64 | syl3anc | |
66 | 50 65 | eqeltrd | |
67 | uneq12 | |
|
68 | 67 | eleq1d | |
69 | 66 68 | syl5ibrcom | |
70 | 69 | rexlimdvva | |
71 | 15 70 | biimtrrid | |
72 | 14 71 | sylbid | |
73 | 1 72 | syl | |
74 | 73 | anabsi5 | |