Metamath Proof Explorer


Theorem diophun

Description: If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Assertion diophun ADiophNBDiophNABDiophN

Proof

Step Hyp Ref Expression
1 eldiophelnn0 ADiophNN0
2 nnex V
3 2 jctr N0N0V
4 1z 1
5 nnuz =1
6 5 uzinf 1¬Fin
7 4 6 ax-mp ¬Fin
8 elfznn a1Na
9 8 ssriv 1N
10 7 9 pm3.2i ¬Fin1N
11 eldioph2b N0V¬Fin1NADiophNamzPolyA=b|d0b=d1Nad=0
12 eldioph2b N0V¬Fin1NBDiophNcmzPolyB=b|d0b=d1Ncd=0
13 11 12 anbi12d N0V¬Fin1NADiophNBDiophNamzPolyA=b|d0b=d1Nad=0cmzPolyB=b|d0b=d1Ncd=0
14 3 10 13 sylancl N0ADiophNBDiophNamzPolyA=b|d0b=d1Nad=0cmzPolyB=b|d0b=d1Ncd=0
15 reeanv amzPolycmzPolyA=b|d0b=d1Nad=0B=b|d0b=d1Ncd=0amzPolyA=b|d0b=d1Nad=0cmzPolyB=b|d0b=d1Ncd=0
16 unab b|d0b=d1Nad=0b|d0b=d1Ncd=0=b|d0b=d1Nad=0d0b=d1Ncd=0
17 r19.43 d0b=d1Nad=0b=d1Ncd=0d0b=d1Nad=0d0b=d1Ncd=0
18 andi b=d1Nad=0cd=0b=d1Nad=0b=d1Ncd=0
19 zex V
20 nn0ssz 0
21 mapss V00
22 19 20 21 mp2an 0
23 22 sseli d0d
24 23 adantl N0amzPolycmzPolyd0d
25 fveq2 e=dae=ad
26 fveq2 e=dce=cd
27 25 26 oveq12d e=daece=adcd
28 eqid eaece=eaece
29 ovex adcdV
30 27 28 29 fvmpt deaeced=adcd
31 24 30 syl N0amzPolycmzPolyd0eaeced=adcd
32 31 eqeq1d N0amzPolycmzPolyd0eaeced=0adcd=0
33 simplrl N0amzPolycmzPolyd0amzPoly
34 mzpf amzPolya:
35 33 34 syl N0amzPolycmzPolyd0a:
36 35 24 ffvelcdmd N0amzPolycmzPolyd0ad
37 36 zcnd N0amzPolycmzPolyd0ad
38 simplrr N0amzPolycmzPolyd0cmzPoly
39 mzpf cmzPolyc:
40 38 39 syl N0amzPolycmzPolyd0c:
41 40 24 ffvelcdmd N0amzPolycmzPolyd0cd
42 41 zcnd N0amzPolycmzPolyd0cd
43 37 42 mul0ord N0amzPolycmzPolyd0adcd=0ad=0cd=0
44 32 43 bitr2d N0amzPolycmzPolyd0ad=0cd=0eaeced=0
45 44 anbi2d N0amzPolycmzPolyd0b=d1Nad=0cd=0b=d1Neaeced=0
46 18 45 bitr3id N0amzPolycmzPolyd0b=d1Nad=0b=d1Ncd=0b=d1Neaeced=0
47 46 rexbidva N0amzPolycmzPolyd0b=d1Nad=0b=d1Ncd=0d0b=d1Neaeced=0
48 17 47 bitr3id N0amzPolycmzPolyd0b=d1Nad=0d0b=d1Ncd=0d0b=d1Neaeced=0
49 48 abbidv N0amzPolycmzPolyb|d0b=d1Nad=0d0b=d1Ncd=0=b|d0b=d1Neaeced=0
50 16 49 eqtrid N0amzPolycmzPolyb|d0b=d1Nad=0b|d0b=d1Ncd=0=b|d0b=d1Neaeced=0
51 simpl N0amzPolycmzPolyN0
52 2 9 pm3.2i V1N
53 52 a1i N0amzPolycmzPolyV1N
54 simprl N0amzPolycmzPolyamzPoly
55 54 34 syl N0amzPolycmzPolya:
56 55 feqmptd N0amzPolycmzPolya=eae
57 56 54 eqeltrrd N0amzPolycmzPolyeaemzPoly
58 simprr N0amzPolycmzPolycmzPoly
59 58 39 syl N0amzPolycmzPolyc:
60 59 feqmptd N0amzPolycmzPolyc=ece
61 60 58 eqeltrrd N0amzPolycmzPolyecemzPoly
62 mzpmulmpt eaemzPolyecemzPolyeaecemzPoly
63 57 61 62 syl2anc N0amzPolycmzPolyeaecemzPoly
64 eldioph2 N0V1NeaecemzPolyb|d0b=d1Neaeced=0DiophN
65 51 53 63 64 syl3anc N0amzPolycmzPolyb|d0b=d1Neaeced=0DiophN
66 50 65 eqeltrd N0amzPolycmzPolyb|d0b=d1Nad=0b|d0b=d1Ncd=0DiophN
67 uneq12 A=b|d0b=d1Nad=0B=b|d0b=d1Ncd=0AB=b|d0b=d1Nad=0b|d0b=d1Ncd=0
68 67 eleq1d A=b|d0b=d1Nad=0B=b|d0b=d1Ncd=0ABDiophNb|d0b=d1Nad=0b|d0b=d1Ncd=0DiophN
69 66 68 syl5ibrcom N0amzPolycmzPolyA=b|d0b=d1Nad=0B=b|d0b=d1Ncd=0ABDiophN
70 69 rexlimdvva N0amzPolycmzPolyA=b|d0b=d1Nad=0B=b|d0b=d1Ncd=0ABDiophN
71 15 70 biimtrrid N0amzPolyA=b|d0b=d1Nad=0cmzPolyB=b|d0b=d1Ncd=0ABDiophN
72 14 71 sylbid N0ADiophNBDiophNABDiophN
73 1 72 syl ADiophNADiophNBDiophNABDiophN
74 73 anabsi5 ADiophNBDiophNABDiophN