Step |
Hyp |
Ref |
Expression |
1 |
|
eldiophelnn0 |
|
2 |
|
nnex |
|
3 |
2
|
jctr |
|
4 |
|
1z |
|
5 |
|
nnuz |
|
6 |
5
|
uzinf |
|
7 |
4 6
|
ax-mp |
|
8 |
|
elfznn |
|
9 |
8
|
ssriv |
|
10 |
7 9
|
pm3.2i |
|
11 |
|
eldioph2b |
|
12 |
|
eldioph2b |
|
13 |
11 12
|
anbi12d |
|
14 |
3 10 13
|
sylancl |
|
15 |
|
reeanv |
|
16 |
|
unab |
|
17 |
|
r19.43 |
|
18 |
|
andi |
|
19 |
|
zex |
|
20 |
|
nn0ssz |
|
21 |
|
mapss |
|
22 |
19 20 21
|
mp2an |
|
23 |
22
|
sseli |
|
24 |
23
|
adantl |
|
25 |
|
fveq2 |
|
26 |
|
fveq2 |
|
27 |
25 26
|
oveq12d |
|
28 |
|
eqid |
|
29 |
|
ovex |
|
30 |
27 28 29
|
fvmpt |
|
31 |
24 30
|
syl |
|
32 |
31
|
eqeq1d |
|
33 |
|
simplrl |
|
34 |
|
mzpf |
|
35 |
33 34
|
syl |
|
36 |
35 24
|
ffvelrnd |
|
37 |
36
|
zcnd |
|
38 |
|
simplrr |
|
39 |
|
mzpf |
|
40 |
38 39
|
syl |
|
41 |
40 24
|
ffvelrnd |
|
42 |
41
|
zcnd |
|
43 |
37 42
|
mul0ord |
|
44 |
32 43
|
bitr2d |
|
45 |
44
|
anbi2d |
|
46 |
18 45
|
bitr3id |
|
47 |
46
|
rexbidva |
|
48 |
17 47
|
bitr3id |
|
49 |
48
|
abbidv |
|
50 |
16 49
|
eqtrid |
|
51 |
|
simpl |
|
52 |
2 9
|
pm3.2i |
|
53 |
52
|
a1i |
|
54 |
|
simprl |
|
55 |
54 34
|
syl |
|
56 |
55
|
feqmptd |
|
57 |
56 54
|
eqeltrrd |
|
58 |
|
simprr |
|
59 |
58 39
|
syl |
|
60 |
59
|
feqmptd |
|
61 |
60 58
|
eqeltrrd |
|
62 |
|
mzpmulmpt |
|
63 |
57 61 62
|
syl2anc |
|
64 |
|
eldioph2 |
|
65 |
51 53 63 64
|
syl3anc |
|
66 |
50 65
|
eqeltrd |
|
67 |
|
uneq12 |
|
68 |
67
|
eleq1d |
|
69 |
66 68
|
syl5ibrcom |
|
70 |
69
|
rexlimdvva |
|
71 |
15 70
|
syl5bir |
|
72 |
14 71
|
sylbid |
|
73 |
1 72
|
syl |
|
74 |
73
|
anabsi5 |
|