Description: For any natural number N , the Dirichlet Kernel ( DN ) is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dirkercncf.d | |
|
Assertion | dirkercncf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dirkercncf.d | |
|
2 | 1 | dirkerf | |
3 | ax-resscn | |
|
4 | 3 | a1i | |
5 | 2 4 | fssd | |
6 | 5 | ad2antrr | |
7 | oveq1 | |
|
8 | 7 | eqeq1d | |
9 | oveq2 | |
|
10 | 9 | fveq2d | |
11 | oveq1 | |
|
12 | 11 | fveq2d | |
13 | 12 | oveq2d | |
14 | 10 13 | oveq12d | |
15 | 8 14 | ifbieq2d | |
16 | 15 | cbvmptv | |
17 | 16 | mpteq2i | |
18 | 1 17 | eqtri | |
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | simpll | |
|
24 | simplr | |
|
25 | simpr | |
|
26 | 18 19 20 21 22 23 24 25 | dirkercncflem3 | |
27 | 3 | jctl | |
28 | 27 | ad2antlr | |
29 | eqid | |
|
30 | 29 | tgioo2 | |
31 | 29 30 | cnplimc | |
32 | 28 31 | syl | |
33 | 6 26 32 | mpbir2and | |
34 | 29 | cnfldtop | |
35 | 34 | a1i | |
36 | 2 | ad2antrr | |
37 | 3 | a1i | |
38 | retopon | |
|
39 | 38 | toponunii | |
40 | 29 | cnfldtopon | |
41 | 40 | toponunii | |
42 | 39 41 | cnprest2 | |
43 | 35 36 37 42 | syl3anc | |
44 | 33 43 | mpbid | |
45 | 30 | eqcomi | |
46 | 45 | a1i | |
47 | 46 | oveq2d | |
48 | 47 | fveq1d | |
49 | 44 48 | eleqtrd | |
50 | simpll | |
|
51 | simplr | |
|
52 | neqne | |
|
53 | 52 | adantl | |
54 | eqid | |
|
55 | eqid | |
|
56 | eqid | |
|
57 | eqid | |
|
58 | 18 50 51 53 54 55 56 57 | dirkercncflem4 | |
59 | 49 58 | pm2.61dan | |
60 | 59 | ralrimiva | |
61 | cncnp | |
|
62 | 38 38 61 | mp2an | |
63 | 2 60 62 | sylanbrc | |
64 | 29 30 30 | cncfcn | |
65 | 3 3 64 | mp2an | |
66 | 63 65 | eleqtrrdi | |