Metamath Proof Explorer


Theorem disjrnmpt2

Description: Disjointness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis disjrnmpt2.1 F=xAB
Assertion disjrnmpt2 DisjxABDisjyranFy

Proof

Step Hyp Ref Expression
1 disjrnmpt2.1 F=xAB
2 id y=wy=w
3 2 cbvdisjv DisjyranFyDisjwranFw
4 id w=vw=v
5 4 ndisj2 ¬DisjwranFwwranFvranFwvwv
6 5 biimpi ¬DisjwranFwwranFvranFwvwv
7 3 6 sylnbi ¬DisjyranFywranFvranFwvwv
8 1 elrnmpt wranFwranFxAw=B
9 8 ibi wranFxAw=B
10 nfcv _zB
11 nfcsb1v _xz/xB
12 csbeq1a x=zB=z/xB
13 10 11 12 cbvmpt xAB=zAz/xB
14 1 13 eqtri F=zAz/xB
15 14 elrnmpt vranFvranFzAv=z/xB
16 15 ibi vranFzAv=z/xB
17 9 16 anim12i wranFvranFxAw=BzAv=z/xB
18 nfv zw=B
19 11 nfeq2 xv=z/xB
20 18 19 reean xAzAw=Bv=z/xBxAw=BzAv=z/xB
21 17 20 sylibr wranFvranFxAzAw=Bv=z/xB
22 21 adantr wranFvranFwvwvxAzAw=Bv=z/xB
23 nfmpt1 _xxAB
24 1 23 nfcxfr _xF
25 24 nfrn _xranF
26 25 nfcri xwranF
27 25 nfcri xvranF
28 26 27 nfan xwranFvranF
29 nfv xwvwv
30 28 29 nfan xwranFvranFwvwv
31 simpll w=Bv=z/xBx=zw=B
32 12 adantl w=Bv=z/xBx=zB=z/xB
33 id v=z/xBv=z/xB
34 33 eqcomd v=z/xBz/xB=v
35 34 ad2antlr w=Bv=z/xBx=zz/xB=v
36 31 32 35 3eqtrd w=Bv=z/xBx=zw=v
37 36 adantll wvw=Bv=z/xBx=zw=v
38 simpll wvw=Bv=z/xBx=zwv
39 38 neneqd wvw=Bv=z/xBx=z¬w=v
40 37 39 pm2.65da wvw=Bv=z/xB¬x=z
41 40 neqned wvw=Bv=z/xBxz
42 41 adantlr wvwvw=Bv=z/xBxz
43 id w=Bw=B
44 43 eqcomd w=BB=w
45 44 ad2antrl wvw=Bv=z/xBB=w
46 34 ad2antll wvw=Bv=z/xBz/xB=v
47 45 46 ineq12d wvw=Bv=z/xBBz/xB=wv
48 simpl wvw=Bv=z/xBwv
49 47 48 eqnetrd wvw=Bv=z/xBBz/xB
50 49 adantll wvwvw=Bv=z/xBBz/xB
51 42 50 jca wvwvw=Bv=z/xBxzBz/xB
52 51 ex wvwvw=Bv=z/xBxzBz/xB
53 52 adantl wranFvranFwvwvw=Bv=z/xBxzBz/xB
54 53 reximdv wranFvranFwvwvzAw=Bv=z/xBzAxzBz/xB
55 54 a1d wranFvranFwvwvxAzAw=Bv=z/xBzAxzBz/xB
56 30 55 reximdai wranFvranFwvwvxAzAw=Bv=z/xBxAzAxzBz/xB
57 22 56 mpd wranFvranFwvwvxAzAxzBz/xB
58 57 ex wranFvranFwvwvxAzAxzBz/xB
59 58 a1i ¬DisjyranFywranFvranFwvwvxAzAxzBz/xB
60 59 rexlimdvv ¬DisjyranFywranFvranFwvwvxAzAxzBz/xB
61 7 60 mpd ¬DisjyranFyxAzAxzBz/xB
62 csbeq1 u=zu/xB=z/xB
63 62 ndisj2 ¬DisjuAu/xBuAzAuzu/xBz/xB
64 nfcv _xA
65 nfv xuz
66 nfcsb1v _xu/xB
67 66 11 nfin _xu/xBz/xB
68 nfcv _x
69 67 68 nfne xu/xBz/xB
70 65 69 nfan xuzu/xBz/xB
71 64 70 nfrexw xzAuzu/xBz/xB
72 nfv uzAxzBz/xB
73 neeq1 u=xuzxz
74 csbeq1 u=xu/xB=x/xB
75 csbid x/xB=B
76 74 75 eqtrdi u=xu/xB=B
77 76 ineq1d u=xu/xBz/xB=Bz/xB
78 77 neeq1d u=xu/xBz/xBBz/xB
79 73 78 anbi12d u=xuzu/xBz/xBxzBz/xB
80 79 rexbidv u=xzAuzu/xBz/xBzAxzBz/xB
81 71 72 80 cbvrexw uAzAuzu/xBz/xBxAzAxzBz/xB
82 63 81 bitri ¬DisjuAu/xBxAzAxzBz/xB
83 nfcv _uB
84 csbeq1a x=uB=u/xB
85 83 66 84 cbvdisj DisjxABDisjuAu/xB
86 82 85 xchnxbir ¬DisjxABxAzAxzBz/xB
87 61 86 sylibr ¬DisjyranFy¬DisjxAB
88 87 con4i DisjxABDisjyranFy