Metamath Proof Explorer


Theorem div4p1lem1div2

Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021)

Ref Expression
Assertion div4p1lem1div2 N6NN4+1N12

Proof

Step Hyp Ref Expression
1 6re 6
2 1 a1i N6
3 id NN
4 2 3 3 leadd2d N6NN+6N+N
5 4 biimpa N6NN+6N+N
6 recn NN
7 6 times2d N N2=N+N
8 7 adantr N6N N2=N+N
9 5 8 breqtrrd N6NN+6 N2
10 4cn 4
11 10 a1i N4
12 2cn 2
13 12 a1i N2
14 6 11 13 addassd NN+4+2=N+4+2
15 4p2e6 4+2=6
16 15 oveq2i N+4+2=N+6
17 14 16 eqtrdi NN+4+2=N+6
18 17 breq1d NN+4+2 N2N+6 N2
19 18 adantr N6NN+4+2 N2N+6 N2
20 9 19 mpbird N6NN+4+2 N2
21 4re 4
22 21 a1i N4
23 4ne0 40
24 23 a1i N40
25 3 22 24 redivcld NN4
26 peano2re N4N4+1
27 25 26 syl NN4+1
28 peano2rem NN1
29 28 rehalfcld NN12
30 4pos 0<4
31 21 30 pm3.2i 40<4
32 31 a1i N40<4
33 lemul1 N4+1N1240<4N4+1N12N4+14N124
34 27 29 32 33 syl3anc NN4+1N12N4+14N124
35 25 recnd NN4
36 1cnd N1
37 6 11 24 divcan1d NN44=N
38 10 mullidi 14=4
39 38 a1i N14=4
40 37 39 oveq12d NN44+14=N+4
41 35 11 36 40 joinlmuladdmuld NN4+14=N+4
42 2t2e4 22=4
43 42 eqcomi 4=22
44 43 a1i N4=22
45 44 oveq2d NN124=N1222
46 29 recnd NN12
47 mulass N1222N1222=N1222
48 47 eqcomd N1222N1222=N1222
49 46 13 13 48 syl3anc NN1222=N1222
50 28 recnd NN1
51 2ne0 20
52 51 a1i N20
53 50 13 52 divcan1d NN122=N1
54 53 oveq1d NN1222=N12
55 6 36 13 subdird NN12= N212
56 12 mullidi 12=2
57 56 a1i N12=2
58 57 oveq2d N N212= N22
59 54 55 58 3eqtrd NN1222= N22
60 45 49 59 3eqtrd NN124= N22
61 41 60 breq12d NN4+14N124N+4 N22
62 3 22 readdcld NN+4
63 2re 2
64 63 a1i N2
65 3 64 remulcld N N2
66 leaddsub N+42 N2N+4+2 N2N+4 N22
67 66 bicomd N+42 N2N+4 N22N+4+2 N2
68 62 64 65 67 syl3anc NN+4 N22N+4+2 N2
69 34 61 68 3bitrd NN4+1N12N+4+2 N2
70 69 adantr N6NN4+1N12N+4+2 N2
71 20 70 mpbird N6NN4+1N12