Metamath Proof Explorer


Theorem divcnvlin

Description: Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017)

Ref Expression
Hypotheses divcnvlin.1 Z=M
divcnvlin.2 φM
divcnvlin.3 φA
divcnvlin.4 φB
divcnvlin.5 φFV
divcnvlin.6 φkZFk=k+Ak+B
Assertion divcnvlin φF1

Proof

Step Hyp Ref Expression
1 divcnvlin.1 Z=M
2 divcnvlin.2 φM
3 divcnvlin.3 φA
4 divcnvlin.4 φB
5 divcnvlin.5 φFV
6 divcnvlin.6 φkZFk=k+Ak+B
7 nncn mm
8 7 adantl φmm
9 4 zcnd φB
10 3 9 subcld φAB
11 10 adantr φmAB
12 nnne0 mm0
13 12 adantl φmm0
14 8 11 8 13 divdird φmm+A-Bm=mm+ABm
15 8 13 dividd φmmm=1
16 15 oveq1d φmmm+ABm=1+ABm
17 14 16 eqtrd φmm+A-Bm=1+ABm
18 17 mpteq2dva φmm+A-Bm=m1+ABm
19 nnuz =1
20 1zzd φ1
21 divcnv ABmABm0
22 10 21 syl φmABm0
23 1cnd φ1
24 nnex V
25 24 mptex m1+ABmV
26 25 a1i φm1+ABmV
27 11 8 13 divcld φmABm
28 27 fmpttd φmABm:
29 28 ffvelcdmda φkmABmk
30 oveq2 m=kABm=ABk
31 30 oveq2d m=k1+ABm=1+ABk
32 eqid m1+ABm=m1+ABm
33 ovex 1+ABkV
34 31 32 33 fvmpt km1+ABmk=1+ABk
35 eqid mABm=mABm
36 ovex ABkV
37 30 35 36 fvmpt kmABmk=ABk
38 37 oveq2d k1+mABmk=1+ABk
39 34 38 eqtr4d km1+ABmk=1+mABmk
40 39 adantl φkm1+ABmk=1+mABmk
41 19 20 22 23 26 29 40 climaddc2 φm1+ABm1+0
42 18 41 eqbrtrd φmm+A-Bm1+0
43 nnssz
44 resmpt mm+A-Bm=mm+A-Bm
45 43 44 ax-mp mm+A-Bm=mm+A-Bm
46 19 reseq2i mm+A-Bm=mm+A-Bm1
47 45 46 eqtr3i mm+A-Bm=mm+A-Bm1
48 1p0e1 1+0=1
49 47 48 breq12i mm+A-Bm1+0mm+A-Bm11
50 1z 1
51 zex V
52 51 mptex mm+A-BmV
53 climres 1mm+A-BmVmm+A-Bm11mm+A-Bm1
54 50 52 53 mp2an mm+A-Bm11mm+A-Bm1
55 49 54 bitri mm+A-Bm1+0mm+A-Bm1
56 42 55 sylib φmm+A-Bm1
57 52 a1i φmm+A-BmV
58 eluzelz kMk
59 58 1 eleq2s kZk
60 59 zcnd kZk
61 60 adantl φkZk
62 4 adantr φkZB
63 62 zcnd φkZB
64 3 adantr φkZA
65 61 63 64 ppncand φkZk+B+AB=k+A
66 65 oveq1d φkZk+B+ABk+B=k+Ak+B
67 59 adantl φkZk
68 67 62 zaddcld φkZk+B
69 oveq1 m=k+Bm+A-B=k+B+AB
70 id m=k+Bm=k+B
71 69 70 oveq12d m=k+Bm+A-Bm=k+B+ABk+B
72 eqid mm+A-Bm=mm+A-Bm
73 ovex k+B+ABk+BV
74 71 72 73 fvmpt k+Bmm+A-Bmk+B=k+B+ABk+B
75 68 74 syl φkZmm+A-Bmk+B=k+B+ABk+B
76 66 75 6 3eqtr4d φkZmm+A-Bmk+B=Fk
77 1 2 4 5 57 76 climshft2 φF1mm+A-Bm1
78 56 77 mpbird φF1