Description: The product of two diagonal matrices is a diagonal matrix. (Contributed by AV, 20-Aug-2019) (Revised by AV, 18-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmatid.a | |
|
dmatid.b | |
||
dmatid.0 | |
||
dmatid.d | |
||
Assertion | dmatmulcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatid.a | |
|
2 | dmatid.b | |
|
3 | dmatid.0 | |
|
4 | dmatid.d | |
|
5 | oveq | |
|
6 | 5 | eqeq1d | |
7 | 6 | imbi2d | |
8 | 7 | 2ralbidv | |
9 | eqid | |
|
10 | simpll | |
|
11 | simplr | |
|
12 | 11 | 3ad2ant1 | |
13 | eqid | |
|
14 | simp2 | |
|
15 | simp3 | |
|
16 | 1 13 3 4 | dmatmat | |
17 | 16 | imp | |
18 | 17 | adantrr | |
19 | 18 | 3ad2ant1 | |
20 | 1 9 13 14 15 19 | matecld | |
21 | 1 13 3 4 | dmatmat | |
22 | 21 | imp | |
23 | 22 | adantrl | |
24 | 23 | 3ad2ant1 | |
25 | 1 9 13 14 15 24 | matecld | |
26 | eqid | |
|
27 | 9 26 | ringcl | |
28 | 12 20 25 27 | syl3anc | |
29 | 9 3 | ring0cl | |
30 | 29 | adantl | |
31 | 30 | adantr | |
32 | 31 | 3ad2ant1 | |
33 | 28 32 | ifcld | |
34 | 1 9 2 10 11 33 | matbas2d | |
35 | eqidd | |
|
36 | eqeq12 | |
|
37 | oveq12 | |
|
38 | oveq12 | |
|
39 | 37 38 | oveq12d | |
40 | 36 39 | ifbieq1d | |
41 | 40 | adantl | |
42 | simplrl | |
|
43 | simplrr | |
|
44 | ovex | |
|
45 | 3 | fvexi | |
46 | 44 45 | ifex | |
47 | 46 | a1i | |
48 | 35 41 42 43 47 | ovmpod | |
49 | ifnefalse | |
|
50 | 49 | adantl | |
51 | 48 50 | eqtrd | |
52 | 51 | ex | |
53 | 52 | ralrimivva | |
54 | 8 34 53 | elrabd | |
55 | 1 2 3 4 | dmatmul | |
56 | 1 2 3 4 | dmatval | |
57 | 56 | adantr | |
58 | 54 55 57 | 3eltr4d | |