| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmatid.a |  | 
						
							| 2 |  | dmatid.b |  | 
						
							| 3 |  | dmatid.0 |  | 
						
							| 4 |  | dmatid.d |  | 
						
							| 5 |  | oveq |  | 
						
							| 6 | 5 | eqeq1d |  | 
						
							| 7 | 6 | imbi2d |  | 
						
							| 8 | 7 | 2ralbidv |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | simpll |  | 
						
							| 11 |  | simplr |  | 
						
							| 12 | 11 | 3ad2ant1 |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | simp2 |  | 
						
							| 15 |  | simp3 |  | 
						
							| 16 | 1 13 3 4 | dmatmat |  | 
						
							| 17 | 16 | imp |  | 
						
							| 18 | 17 | adantrr |  | 
						
							| 19 | 18 | 3ad2ant1 |  | 
						
							| 20 | 1 9 13 14 15 19 | matecld |  | 
						
							| 21 | 1 13 3 4 | dmatmat |  | 
						
							| 22 | 21 | imp |  | 
						
							| 23 | 22 | adantrl |  | 
						
							| 24 | 23 | 3ad2ant1 |  | 
						
							| 25 | 1 9 13 14 15 24 | matecld |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 9 26 | ringcl |  | 
						
							| 28 | 12 20 25 27 | syl3anc |  | 
						
							| 29 | 9 3 | ring0cl |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 31 | 3ad2ant1 |  | 
						
							| 33 | 28 32 | ifcld |  | 
						
							| 34 | 1 9 2 10 11 33 | matbas2d |  | 
						
							| 35 |  | eqidd |  | 
						
							| 36 |  | eqeq12 |  | 
						
							| 37 |  | oveq12 |  | 
						
							| 38 |  | oveq12 |  | 
						
							| 39 | 37 38 | oveq12d |  | 
						
							| 40 | 36 39 | ifbieq1d |  | 
						
							| 41 | 40 | adantl |  | 
						
							| 42 |  | simplrl |  | 
						
							| 43 |  | simplrr |  | 
						
							| 44 |  | ovex |  | 
						
							| 45 | 3 | fvexi |  | 
						
							| 46 | 44 45 | ifex |  | 
						
							| 47 | 46 | a1i |  | 
						
							| 48 | 35 41 42 43 47 | ovmpod |  | 
						
							| 49 |  | ifnefalse |  | 
						
							| 50 | 49 | adantl |  | 
						
							| 51 | 48 50 | eqtrd |  | 
						
							| 52 | 51 | ex |  | 
						
							| 53 | 52 | ralrimivva |  | 
						
							| 54 | 8 34 53 | elrabd |  | 
						
							| 55 | 1 2 3 4 | dmatmul |  | 
						
							| 56 | 1 2 3 4 | dmatval |  | 
						
							| 57 | 56 | adantr |  | 
						
							| 58 | 54 55 57 | 3eltr4d |  |