Metamath Proof Explorer


Theorem dmatmulcl

Description: The product of two diagonal matrices is a diagonal matrix. (Contributed by AV, 20-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatid.a A=NMatR
dmatid.b B=BaseA
dmatid.0 0˙=0R
dmatid.d D=NDMatR
Assertion dmatmulcl NFinRRingXDYDXAYD

Proof

Step Hyp Ref Expression
1 dmatid.a A=NMatR
2 dmatid.b B=BaseA
3 dmatid.0 0˙=0R
4 dmatid.d D=NDMatR
5 oveq m=xN,yNifx=yxXyRxYy0˙imj=ixN,yNifx=yxXyRxYy0˙j
6 5 eqeq1d m=xN,yNifx=yxXyRxYy0˙imj=0˙ixN,yNifx=yxXyRxYy0˙j=0˙
7 6 imbi2d m=xN,yNifx=yxXyRxYy0˙ijimj=0˙ijixN,yNifx=yxXyRxYy0˙j=0˙
8 7 2ralbidv m=xN,yNifx=yxXyRxYy0˙iNjNijimj=0˙iNjNijixN,yNifx=yxXyRxYy0˙j=0˙
9 eqid BaseR=BaseR
10 simpll NFinRRingXDYDNFin
11 simplr NFinRRingXDYDRRing
12 11 3ad2ant1 NFinRRingXDYDxNyNRRing
13 eqid BaseA=BaseA
14 simp2 NFinRRingXDYDxNyNxN
15 simp3 NFinRRingXDYDxNyNyN
16 1 13 3 4 dmatmat NFinRRingXDXBaseA
17 16 imp NFinRRingXDXBaseA
18 17 adantrr NFinRRingXDYDXBaseA
19 18 3ad2ant1 NFinRRingXDYDxNyNXBaseA
20 1 9 13 14 15 19 matecld NFinRRingXDYDxNyNxXyBaseR
21 1 13 3 4 dmatmat NFinRRingYDYBaseA
22 21 imp NFinRRingYDYBaseA
23 22 adantrl NFinRRingXDYDYBaseA
24 23 3ad2ant1 NFinRRingXDYDxNyNYBaseA
25 1 9 13 14 15 24 matecld NFinRRingXDYDxNyNxYyBaseR
26 eqid R=R
27 9 26 ringcl RRingxXyBaseRxYyBaseRxXyRxYyBaseR
28 12 20 25 27 syl3anc NFinRRingXDYDxNyNxXyRxYyBaseR
29 9 3 ring0cl RRing0˙BaseR
30 29 adantl NFinRRing0˙BaseR
31 30 adantr NFinRRingXDYD0˙BaseR
32 31 3ad2ant1 NFinRRingXDYDxNyN0˙BaseR
33 28 32 ifcld NFinRRingXDYDxNyNifx=yxXyRxYy0˙BaseR
34 1 9 2 10 11 33 matbas2d NFinRRingXDYDxN,yNifx=yxXyRxYy0˙B
35 eqidd NFinRRingXDYDiNjNijxN,yNifx=yxXyRxYy0˙=xN,yNifx=yxXyRxYy0˙
36 eqeq12 x=iy=jx=yi=j
37 oveq12 x=iy=jxXy=iXj
38 oveq12 x=iy=jxYy=iYj
39 37 38 oveq12d x=iy=jxXyRxYy=iXjRiYj
40 36 39 ifbieq1d x=iy=jifx=yxXyRxYy0˙=ifi=jiXjRiYj0˙
41 40 adantl NFinRRingXDYDiNjNijx=iy=jifx=yxXyRxYy0˙=ifi=jiXjRiYj0˙
42 simplrl NFinRRingXDYDiNjNijiN
43 simplrr NFinRRingXDYDiNjNijjN
44 ovex iXjRiYjV
45 3 fvexi 0˙V
46 44 45 ifex ifi=jiXjRiYj0˙V
47 46 a1i NFinRRingXDYDiNjNijifi=jiXjRiYj0˙V
48 35 41 42 43 47 ovmpod NFinRRingXDYDiNjNijixN,yNifx=yxXyRxYy0˙j=ifi=jiXjRiYj0˙
49 ifnefalse ijifi=jiXjRiYj0˙=0˙
50 49 adantl NFinRRingXDYDiNjNijifi=jiXjRiYj0˙=0˙
51 48 50 eqtrd NFinRRingXDYDiNjNijixN,yNifx=yxXyRxYy0˙j=0˙
52 51 ex NFinRRingXDYDiNjNijixN,yNifx=yxXyRxYy0˙j=0˙
53 52 ralrimivva NFinRRingXDYDiNjNijixN,yNifx=yxXyRxYy0˙j=0˙
54 8 34 53 elrabd NFinRRingXDYDxN,yNifx=yxXyRxYy0˙mB|iNjNijimj=0˙
55 1 2 3 4 dmatmul NFinRRingXDYDXAY=xN,yNifx=yxXyRxYy0˙
56 1 2 3 4 dmatval NFinRRingD=mB|iNjNijimj=0˙
57 56 adantr NFinRRingXDYDD=mB|iNjNijimj=0˙
58 54 55 57 3eltr4d NFinRRingXDYDXAYD