Metamath Proof Explorer


Theorem dochlkr

Description: Equivalent conditions for the closure of a kernel to be a hyperplane. (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses dochlkr.h H=LHypK
dochlkr.o ˙=ocHKW
dochlkr.u U=DVecHKW
dochlkr.f F=LFnlU
dochlkr.y Y=LSHypU
dochlkr.l L=LKerU
dochlkr.k φKHLWH
dochlkr.g φGF
Assertion dochlkr φ˙˙LGY˙˙LG=LGLGY

Proof

Step Hyp Ref Expression
1 dochlkr.h H=LHypK
2 dochlkr.o ˙=ocHKW
3 dochlkr.u U=DVecHKW
4 dochlkr.f F=LFnlU
5 dochlkr.y Y=LSHypU
6 dochlkr.l L=LKerU
7 dochlkr.k φKHLWH
8 dochlkr.g φGF
9 eqid BaseU=BaseU
10 1 3 7 dvhlmod φULMod
11 9 4 6 10 8 lkrssv φLGBaseU
12 1 3 9 2 dochocss KHLWHLGBaseULG˙˙LG
13 7 11 12 syl2anc φLG˙˙LG
14 13 adantr φ˙˙LGYLG˙˙LG
15 1 3 7 dvhlvec φULVec
16 15 adantr φ˙˙LGYULVec
17 10 adantr φ˙˙LGYULMod
18 simpr φ˙˙LGY˙˙LGY
19 9 5 17 18 lshpne φ˙˙LGY˙˙LGBaseU
20 19 ex φ˙˙LGY˙˙LGBaseU
21 9 5 4 6 15 8 lkrshpor φLGYLG=BaseU
22 21 ord φ¬LGYLG=BaseU
23 2fveq3 LG=BaseU˙˙LG=˙˙BaseU
24 23 adantl φLG=BaseU˙˙LG=˙˙BaseU
25 7 adantr φLG=BaseUKHLWH
26 1 3 2 9 25 dochoc1 φLG=BaseU˙˙BaseU=BaseU
27 24 26 eqtrd φLG=BaseU˙˙LG=BaseU
28 27 ex φLG=BaseU˙˙LG=BaseU
29 22 28 syld φ¬LGY˙˙LG=BaseU
30 29 necon1ad φ˙˙LGBaseULGY
31 20 30 syld φ˙˙LGYLGY
32 31 imp φ˙˙LGYLGY
33 5 16 32 18 lshpcmp φ˙˙LGYLG˙˙LGLG=˙˙LG
34 14 33 mpbid φ˙˙LGYLG=˙˙LG
35 34 eqcomd φ˙˙LGY˙˙LG=LG
36 35 32 jca φ˙˙LGY˙˙LG=LGLGY
37 36 ex φ˙˙LGY˙˙LG=LGLGY
38 eleq1 ˙˙LG=LG˙˙LGYLGY
39 38 biimpar ˙˙LG=LGLGY˙˙LGY
40 37 39 impbid1 φ˙˙LGY˙˙LG=LGLGY