Metamath Proof Explorer


Theorem dquartlem1

Description: Lemma for dquart . (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses dquart.b φB
dquart.c φC
dquart.x φX
dquart.s φS
dquart.m φM=2S2
dquart.m0 φM0
dquart.i φI
dquart.i2 φI2=S2-B2+C4S
Assertion dquartlem1 φX2+M+B2+M2XC4S=0X=-S+IX=-S-I

Proof

Step Hyp Ref Expression
1 dquart.b φB
2 dquart.c φC
3 dquart.x φX
4 dquart.s φS
5 dquart.m φM=2S2
6 dquart.m0 φM0
7 dquart.i φI
8 dquart.i2 φI2=S2-B2+C4S
9 3 sqcld φX2
10 2cn 2
11 mulcl 2S2S
12 10 4 11 sylancr φ2S
13 12 sqcld φ2S2
14 5 13 eqeltrd φM
15 14 1 addcld φM+B
16 15 halfcld φM+B2
17 9 16 addcld φX2+M+B2
18 14 halfcld φM2
19 18 3 mulcld φM2X
20 4cn 4
21 20 a1i φ4
22 4ne0 40
23 22 a1i φ40
24 2 21 23 divcld φC4
25 19 24 subcld φM2XC4
26 5 6 eqnetrrd φ2S20
27 sqne0 2S2S202S0
28 12 27 syl φ2S202S0
29 26 28 mpbid φ2S0
30 mulne0b 2S20S02S0
31 10 4 30 sylancr φ20S02S0
32 29 31 mpbird φ20S0
33 32 simprd φS0
34 25 4 33 divcld φM2XC4S
35 17 34 addcld φX2+M+B2+M2XC4S
36 10 a1i φ2
37 2ne0 20
38 37 a1i φ20
39 35 36 38 diveq0ad φX2+M+B2+M2XC4S2=0X2+M+B2+M2XC4S=0
40 9 16 34 addassd φX2+M+B2+M2XC4S=X2+M+B2+M2XC4S
41 40 oveq1d φX2+M+B2+M2XC4S2=X2+M+B2+M2XC4S2
42 16 34 addcld φM+B2+M2XC4S
43 9 42 36 38 divdird φX2+M+B2+M2XC4S2=X22+M+B2+M2XC4S2
44 9 36 38 divrec2d φX22=12X2
45 19 24 4 33 divsubdird φM2XC4S=M2XSC4S
46 18 3 4 33 div23d φM2XS=M2SX
47 4 sqvald φS2=SS
48 47 oveq2d φ2S2=2SS
49 sqmul 2S2S2=22S2
50 10 4 49 sylancr φ2S2=22S2
51 10 sqvali 22=22
52 51 oveq1i 22S2=22S2
53 50 52 eqtrdi φ2S2=22S2
54 4 sqcld φS2
55 36 36 54 mulassd φ22S2=22S2
56 5 53 55 3eqtrd φM=22S2
57 56 oveq1d φM2=22S22
58 mulcl 2S22S2
59 10 54 58 sylancr φ2S2
60 59 36 38 divcan3d φ22S22=2S2
61 57 60 eqtrd φM2=2S2
62 36 4 4 mulassd φ2SS=2SS
63 48 61 62 3eqtr4d φM2=2SS
64 63 oveq1d φM2S=2SSS
65 12 4 33 divcan4d φ2SSS=2S
66 64 65 eqtrd φM2S=2S
67 66 oveq1d φM2SX=2SX
68 46 67 eqtrd φM2XS=2SX
69 68 oveq1d φM2XSC4S=2SXC4S
70 45 69 eqtrd φM2XC4S=2SXC4S
71 70 oveq2d φM+B2+M2XC4S=M+B2+2SX-C4S
72 12 3 mulcld φ2SX
73 24 4 33 divcld φC4S
74 16 72 73 addsub12d φM+B2+2SX-C4S=2SX+M+B2-C4S
75 71 74 eqtrd φM+B2+M2XC4S=2SX+M+B2-C4S
76 75 oveq1d φM+B2+M2XC4S2=2SX+M+B2-C4S2
77 16 73 subcld φM+B2C4S
78 72 77 36 38 divdird φ2SX+M+B2-C4S2=2SX2+M+B2C4S2
79 36 4 3 mulassd φ2SX=2SX
80 79 oveq1d φ2SX2=2SX2
81 4 3 mulcld φSX
82 81 36 38 divcan3d φ2SX2=SX
83 80 82 eqtrd φ2SX2=SX
84 54 negcld φS2
85 1 halfcld φB2
86 84 85 subcld φ-S2-B2
87 54 86 73 subsub4d φS2--S2-B2-C4S=S2S2-B2+C4S
88 14 1 36 38 divdird φM+B2=M2+B2
89 54 2timesd φ2S2=S2+S2
90 61 89 eqtrd φM2=S2+S2
91 90 oveq1d φM2+B2=S2+S2+B2
92 88 91 eqtrd φM+B2=S2+S2+B2
93 54 54 85 addassd φS2+S2+B2=S2+S2+B2
94 54 85 addcld φS2+B2
95 54 94 subnegd φS2S2+B2=S2+S2+B2
96 54 85 negdi2d φS2+B2=-S2-B2
97 96 oveq2d φS2S2+B2=S2-S2-B2
98 95 97 eqtr3d φS2+S2+B2=S2-S2-B2
99 92 93 98 3eqtrd φM+B2=S2-S2-B2
100 99 oveq1d φM+B2C4S=S2--S2-B2-C4S
101 8 oveq2d φS2I2=S2S2-B2+C4S
102 87 100 101 3eqtr4d φM+B2C4S=S2I2
103 102 oveq1d φM+B2C4S2=S2I22
104 83 103 oveq12d φ2SX2+M+B2C4S2=SX+S2I22
105 76 78 104 3eqtrd φM+B2+M2XC4S2=SX+S2I22
106 44 105 oveq12d φX22+M+B2+M2XC4S2=12X2+SX+S2I22
107 41 43 106 3eqtrd φX2+M+B2+M2XC4S2=12X2+SX+S2I22
108 107 eqeq1d φX2+M+B2+M2XC4S2=012X2+SX+S2I22=0
109 39 108 bitr3d φX2+M+B2+M2XC4S=012X2+SX+S2I22=0
110 ax-1cn 1
111 halfcl 112
112 110 111 mp1i φ12
113 ax-1ne0 10
114 110 10 113 37 divne0i 120
115 114 a1i φ120
116 7 sqcld φI2
117 54 116 subcld φS2I2
118 117 halfcld φS2I22
119 110 a1i φ1
120 2cnne0 220
121 120 a1i φ220
122 divmuldiv 1S2I222022012S2I22=1S2I222
123 119 117 121 121 122 syl22anc φ12S2I22=1S2I222
124 117 mullidd φ1S2I2=S2I2
125 2t2e4 22=4
126 125 a1i φ22=4
127 124 126 oveq12d φ1S2I222=S2I24
128 123 127 eqtrd φ12S2I22=S2I24
129 128 oveq2d φ412S2I22=4S2I24
130 117 21 23 divcan2d φ4S2I24=S2I2
131 129 130 eqtrd φ412S2I22=S2I2
132 131 oveq2d φS2412S2I22=S2S2I2
133 54 116 nncand φS2S2I2=I2
134 132 133 eqtr2d φI2=S2412S2I22
135 112 115 4 118 3 7 134 quad2 φ12X2+SX+S2I22=0X=-S+I212X=-S-I212
136 10 37 recidi 212=1
137 136 oveq2i -S+I212=-S+I1
138 4 negcld φS
139 138 7 addcld φ-S+I
140 139 div1d φ-S+I1=-S+I
141 137 140 eqtrid φ-S+I212=-S+I
142 141 eqeq2d φX=-S+I212X=-S+I
143 136 oveq2i -S-I212=-S-I1
144 138 7 subcld φ-S-I
145 144 div1d φ-S-I1=-S-I
146 143 145 eqtrid φ-S-I212=-S-I
147 146 eqeq2d φX=-S-I212X=-S-I
148 142 147 orbi12d φX=-S+I212X=-S-I212X=-S+IX=-S-I
149 109 135 148 3bitrd φX2+M+B2+M2XC4S=0X=-S+IX=-S-I