Metamath Proof Explorer


Theorem drngdimgt0

Description: The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion drngdimgt0 FLVecFDivRing0<dimF

Proof

Step Hyp Ref Expression
1 1m1e0 11=0
2 simpl FLVecFDivRingFLVec
3 simpr FLVecFDivRingFDivRing
4 drngring FDivRingFRing
5 eqid BaseF=BaseF
6 eqid 1F=1F
7 5 6 ringidcl FRing1FBaseF
8 3 4 7 3syl FLVecFDivRing1FBaseF
9 eqid 0F=0F
10 9 6 drngunz FDivRing1F0F
11 10 adantl FLVecFDivRing1F0F
12 eqid LSpanF=LSpanF
13 eqid F𝑠LSpanF1F=F𝑠LSpanF1F
14 5 12 9 13 lsatdim FLVec1FBaseF1F0FdimF𝑠LSpanF1F=1
15 2 8 11 14 syl3anc FLVecFDivRingdimF𝑠LSpanF1F=1
16 lveclmod FLVecFLMod
17 16 adantr FLVecFDivRingFLMod
18 8 snssd FLVecFDivRing1FBaseF
19 eqid LSubSpF=LSubSpF
20 5 19 12 lspcl FLMod1FBaseFLSpanF1FLSubSpF
21 17 18 20 syl2anc FLVecFDivRingLSpanF1FLSubSpF
22 13 lssdimle FLVecLSpanF1FLSubSpFdimF𝑠LSpanF1FdimF
23 2 21 22 syl2anc FLVecFDivRingdimF𝑠LSpanF1FdimF
24 15 23 eqbrtrrd FLVecFDivRing1dimF
25 1nn0 10
26 dimcl FLVecdimF0*
27 26 adantr FLVecFDivRingdimF0*
28 xnn0lem1lt 10dimF0*1dimF11<dimF
29 25 27 28 sylancr FLVecFDivRing1dimF11<dimF
30 24 29 mpbid FLVecFDivRing11<dimF
31 1 30 eqbrtrrid FLVecFDivRing0<dimF