| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngidl.b |  | 
						
							| 2 |  | drngidl.z |  | 
						
							| 3 |  | drngidl.u |  | 
						
							| 4 | 1 2 3 | drngnidl |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 6 2 | nzrnz |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | nzrring |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | ad4antr |  | 
						
							| 15 |  | simp-4r |  | 
						
							| 16 |  | simplr |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 | 17 | eldifad |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 | 19 | ad2antrr |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 21 | eqcomd |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 | 23 | eqcomd |  | 
						
							| 25 | 24 | ad2antrr |  | 
						
							| 26 | 1 2 6 9 10 14 15 16 20 22 25 | ringinveu |  | 
						
							| 27 | 26 | oveq1d |  | 
						
							| 28 | 27 22 | eqtrd |  | 
						
							| 29 | 13 | ad2antrr |  | 
						
							| 30 |  | simplr |  | 
						
							| 31 | 1 6 | ringidcl |  | 
						
							| 32 | 13 31 | syl |  | 
						
							| 33 | 32 | ad2antrr |  | 
						
							| 34 | 30 | snssd |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 35 1 3 | rspcl |  | 
						
							| 37 | 29 34 36 | syl2anc |  | 
						
							| 38 |  | simp-4r |  | 
						
							| 39 | 37 38 | eleqtrd |  | 
						
							| 40 |  | elpri |  | 
						
							| 41 | 39 40 | syl |  | 
						
							| 42 |  | simplr |  | 
						
							| 43 |  | simpr |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 | 1 9 2 | ringlz |  | 
						
							| 46 | 13 18 45 | syl2anc |  | 
						
							| 47 | 46 | ad3antrrr |  | 
						
							| 48 | 42 44 47 | 3eqtrd |  | 
						
							| 49 | 8 | ad4antr |  | 
						
							| 50 | 49 | neneqd |  | 
						
							| 51 | 48 50 | pm2.65da |  | 
						
							| 52 | 51 | neqned |  | 
						
							| 53 | 1 2 35 | pidlnz |  | 
						
							| 54 | 29 30 52 53 | syl3anc |  | 
						
							| 55 | 54 | neneqd |  | 
						
							| 56 | 41 55 | orcnd |  | 
						
							| 57 | 33 56 | eleqtrrd |  | 
						
							| 58 | 1 9 35 | elrspsn |  | 
						
							| 59 | 58 | biimpa |  | 
						
							| 60 | 29 30 57 59 | syl21anc |  | 
						
							| 61 | 28 60 | r19.29a |  | 
						
							| 62 | 61 24 | jca |  | 
						
							| 63 | 62 | anasss |  | 
						
							| 64 | 18 | snssd |  | 
						
							| 65 | 35 1 3 | rspcl |  | 
						
							| 66 | 13 64 65 | syl2anc |  | 
						
							| 67 |  | simplr |  | 
						
							| 68 | 66 67 | eleqtrd |  | 
						
							| 69 |  | elpri |  | 
						
							| 70 | 68 69 | syl |  | 
						
							| 71 |  | eldifsni |  | 
						
							| 72 | 71 | adantl |  | 
						
							| 73 | 1 2 35 | pidlnz |  | 
						
							| 74 | 13 18 72 73 | syl3anc |  | 
						
							| 75 | 74 | neneqd |  | 
						
							| 76 | 70 75 | orcnd |  | 
						
							| 77 | 32 76 | eleqtrrd |  | 
						
							| 78 | 1 9 35 | elrspsn |  | 
						
							| 79 | 78 | biimpa |  | 
						
							| 80 | 13 18 77 79 | syl21anc |  | 
						
							| 81 | 63 80 | reximddv |  | 
						
							| 82 | 81 | ralrimiva |  | 
						
							| 83 | 1 2 6 9 10 12 | isdrng4 |  | 
						
							| 84 | 8 82 83 | mpbir2and |  | 
						
							| 85 | 5 84 | impbida |  |