| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnelprrecn |  | 
						
							| 2 | 1 | a1i |  | 
						
							| 3 |  | simpr |  | 
						
							| 4 |  | relogcl |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 | 5 | recnd |  | 
						
							| 7 | 3 6 | mulcld |  | 
						
							| 8 |  | efcl |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 | 3 6 | mulcomd |  | 
						
							| 11 | 10 | mpteq2dva |  | 
						
							| 12 | 11 | oveq2d |  | 
						
							| 13 |  | 1cnd |  | 
						
							| 14 | 2 | dvmptid |  | 
						
							| 15 | 4 | recnd |  | 
						
							| 16 | 2 3 13 14 15 | dvmptcmul |  | 
						
							| 17 | 6 | mulridd |  | 
						
							| 18 | 17 | mpteq2dva |  | 
						
							| 19 | 12 16 18 | 3eqtrd |  | 
						
							| 20 |  | dvef |  | 
						
							| 21 |  | eff |  | 
						
							| 22 | 21 | a1i |  | 
						
							| 23 | 22 | feqmptd |  | 
						
							| 24 | 23 | eqcomd |  | 
						
							| 25 | 24 | oveq2d |  | 
						
							| 26 | 20 25 24 | 3eqtr4a |  | 
						
							| 27 |  | fveq2 |  | 
						
							| 28 | 2 2 7 5 9 9 19 26 27 27 | dvmptco |  | 
						
							| 29 |  | rpcn |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | rpne0 |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 30 32 3 | cxpefd |  | 
						
							| 34 | 33 | mpteq2dva |  | 
						
							| 35 | 34 | oveq2d |  | 
						
							| 36 | 30 3 | cxpcld |  | 
						
							| 37 | 6 36 | mulcomd |  | 
						
							| 38 | 33 | oveq1d |  | 
						
							| 39 | 37 38 | eqtrd |  | 
						
							| 40 | 39 | mpteq2dva |  | 
						
							| 41 | 28 35 40 | 3eqtr4d |  |