| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rabdiophlem1 |  | 
						
							| 2 |  | rabdiophlem1 |  | 
						
							| 3 |  | divides |  | 
						
							| 4 |  | oveq1 |  | 
						
							| 5 | 4 | eqeq1d |  | 
						
							| 6 |  | oveq1 |  | 
						
							| 7 | 6 | eqeq1d |  | 
						
							| 8 | 5 7 | rexzrexnn0 |  | 
						
							| 9 | 3 8 | bitrdi |  | 
						
							| 10 | 9 | ralimi |  | 
						
							| 11 |  | r19.26 |  | 
						
							| 12 |  | rabbi |  | 
						
							| 13 | 10 11 12 | 3imtr3i |  | 
						
							| 14 | 1 2 13 | syl2an |  | 
						
							| 15 | 14 | 3adant1 |  | 
						
							| 16 |  | nfcv |  | 
						
							| 17 |  | nfcv |  | 
						
							| 18 |  | nfv |  | 
						
							| 19 |  | nfcv |  | 
						
							| 20 |  | nfcv |  | 
						
							| 21 |  | nfcv |  | 
						
							| 22 |  | nfcsb1v |  | 
						
							| 23 | 20 21 22 | nfov |  | 
						
							| 24 |  | nfcsb1v |  | 
						
							| 25 | 23 24 | nfeq |  | 
						
							| 26 |  | nfcv |  | 
						
							| 27 | 26 21 22 | nfov |  | 
						
							| 28 | 27 24 | nfeq |  | 
						
							| 29 | 25 28 | nfor |  | 
						
							| 30 | 19 29 | nfrexw |  | 
						
							| 31 |  | csbeq1a |  | 
						
							| 32 | 31 | oveq2d |  | 
						
							| 33 |  | csbeq1a |  | 
						
							| 34 | 32 33 | eqeq12d |  | 
						
							| 35 | 31 | oveq2d |  | 
						
							| 36 | 35 33 | eqeq12d |  | 
						
							| 37 | 34 36 | orbi12d |  | 
						
							| 38 | 37 | rexbidv |  | 
						
							| 39 | 16 17 18 30 38 | cbvrabw |  | 
						
							| 40 |  | simp1 |  | 
						
							| 41 |  | peano2nn0 |  | 
						
							| 42 | 41 | 3ad2ant1 |  | 
						
							| 43 |  | ovex |  | 
						
							| 44 |  | nn0p1nn |  | 
						
							| 45 |  | elfz1end |  | 
						
							| 46 | 44 45 | sylib |  | 
						
							| 47 |  | mzpproj |  | 
						
							| 48 | 43 46 47 | sylancr |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 50 | rabdiophlem2 |  | 
						
							| 52 |  | mzpmulmpt |  | 
						
							| 53 | 49 51 52 | syl2anc |  | 
						
							| 54 | 53 | 3adant3 |  | 
						
							| 55 | 50 | rabdiophlem2 |  | 
						
							| 56 | 55 | 3adant2 |  | 
						
							| 57 |  | eqrabdioph |  | 
						
							| 58 | 42 54 56 57 | syl3anc |  | 
						
							| 59 |  | mzpnegmpt |  | 
						
							| 60 | 49 59 | syl |  | 
						
							| 61 |  | mzpmulmpt |  | 
						
							| 62 | 60 51 61 | syl2anc |  | 
						
							| 63 | 62 | 3adant3 |  | 
						
							| 64 |  | eqrabdioph |  | 
						
							| 65 | 42 63 56 64 | syl3anc |  | 
						
							| 66 |  | orrabdioph |  | 
						
							| 67 | 58 65 66 | syl2anc |  | 
						
							| 68 |  | oveq1 |  | 
						
							| 69 | 68 | eqeq1d |  | 
						
							| 70 |  | negeq |  | 
						
							| 71 | 70 | oveq1d |  | 
						
							| 72 | 71 | eqeq1d |  | 
						
							| 73 | 69 72 | orbi12d |  | 
						
							| 74 |  | csbeq1 |  | 
						
							| 75 | 74 | oveq2d |  | 
						
							| 76 |  | csbeq1 |  | 
						
							| 77 | 75 76 | eqeq12d |  | 
						
							| 78 | 74 | oveq2d |  | 
						
							| 79 | 78 76 | eqeq12d |  | 
						
							| 80 | 77 79 | orbi12d |  | 
						
							| 81 | 50 73 80 | rexrabdioph |  | 
						
							| 82 | 40 67 81 | syl2anc |  | 
						
							| 83 | 39 82 | eqeltrid |  | 
						
							| 84 | 15 83 | eqeltrd |  |