Description: Equality of equivalence relation in terms of an operation. (Contributed by NM, 15-Feb-1996) (Proof shortened by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eceqoveq.5 | |
|
eceqoveq.7 | |
||
eceqoveq.8 | |
||
eceqoveq.9 | |
||
eceqoveq.10 | |
||
Assertion | eceqoveq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceqoveq.5 | |
|
2 | eceqoveq.7 | |
|
3 | eceqoveq.8 | |
|
4 | eceqoveq.9 | |
|
5 | eceqoveq.10 | |
|
6 | opelxpi | |
|
7 | 6 | ad2antrr | |
8 | 1 | a1i | |
9 | simpr | |
|
10 | 8 9 | ereldm | |
11 | 7 10 | mpbid | |
12 | opelxp2 | |
|
13 | 11 12 | syl | |
14 | 13 | ex | |
15 | 4 | caovcl | |
16 | eleq1 | |
|
17 | 15 16 | imbitrrid | |
18 | 2 3 | ndmovrcl | |
19 | 18 | simprd | |
20 | 17 19 | syl6com | |
21 | 20 | adantll | |
22 | 1 | a1i | |
23 | 6 | adantr | |
24 | 22 23 | erth | |
25 | 24 5 | bitr3d | |
26 | 25 | expr | |
27 | 14 21 26 | pm5.21ndd | |
28 | 27 | an32s | |
29 | eqcom | |
|
30 | erdm | |
|
31 | 1 30 | ax-mp | |
32 | 31 | eleq2i | |
33 | ecdmn0 | |
|
34 | opelxp | |
|
35 | 32 33 34 | 3bitr3i | |
36 | 35 | simplbi2 | |
37 | 36 | ad2antlr | |
38 | 37 | necon2bd | |
39 | simpr | |
|
40 | 2 | ndmov | |
41 | 39 40 | nsyl5 | |
42 | 38 41 | syl6 | |
43 | eleq1 | |
|
44 | 3 43 | mtbiri | |
45 | 35 | simprbi | |
46 | 4 | caovcl | |
47 | 46 | ex | |
48 | 47 | ad2antrr | |
49 | 45 48 | syl5 | |
50 | 49 | necon1bd | |
51 | 44 50 | syl5 | |
52 | 42 51 | impbid | |
53 | 29 52 | bitrid | |
54 | 31 | eleq2i | |
55 | ecdmn0 | |
|
56 | opelxp | |
|
57 | 54 55 56 | 3bitr3i | |
58 | 57 | simprbi | |
59 | 58 | necon1bi | |
60 | 59 | adantl | |
61 | 60 | eqeq1d | |
62 | simpl | |
|
63 | 2 | ndmov | |
64 | 62 63 | nsyl5 | |
65 | 64 | adantl | |
66 | 65 | eqeq2d | |
67 | 53 61 66 | 3bitr4d | |
68 | 28 67 | pm2.61dan | |