| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eceqoveq.5 |
|
| 2 |
|
eceqoveq.7 |
|
| 3 |
|
eceqoveq.8 |
|
| 4 |
|
eceqoveq.9 |
|
| 5 |
|
eceqoveq.10 |
|
| 6 |
|
opelxpi |
|
| 7 |
6
|
ad2antrr |
|
| 8 |
1
|
a1i |
|
| 9 |
|
simpr |
|
| 10 |
8 9
|
ereldm |
|
| 11 |
7 10
|
mpbid |
|
| 12 |
|
opelxp2 |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
ex |
|
| 15 |
4
|
caovcl |
|
| 16 |
|
eleq1 |
|
| 17 |
15 16
|
imbitrrid |
|
| 18 |
2 3
|
ndmovrcl |
|
| 19 |
18
|
simprd |
|
| 20 |
17 19
|
syl6com |
|
| 21 |
20
|
adantll |
|
| 22 |
1
|
a1i |
|
| 23 |
6
|
adantr |
|
| 24 |
22 23
|
erth |
|
| 25 |
24 5
|
bitr3d |
|
| 26 |
25
|
expr |
|
| 27 |
14 21 26
|
pm5.21ndd |
|
| 28 |
27
|
an32s |
|
| 29 |
|
eqcom |
|
| 30 |
|
erdm |
|
| 31 |
1 30
|
ax-mp |
|
| 32 |
31
|
eleq2i |
|
| 33 |
|
ecdmn0 |
|
| 34 |
|
opelxp |
|
| 35 |
32 33 34
|
3bitr3i |
|
| 36 |
35
|
simplbi2 |
|
| 37 |
36
|
ad2antlr |
|
| 38 |
37
|
necon2bd |
|
| 39 |
|
simpr |
|
| 40 |
2
|
ndmov |
|
| 41 |
39 40
|
nsyl5 |
|
| 42 |
38 41
|
syl6 |
|
| 43 |
|
eleq1 |
|
| 44 |
3 43
|
mtbiri |
|
| 45 |
35
|
simprbi |
|
| 46 |
4
|
caovcl |
|
| 47 |
46
|
ex |
|
| 48 |
47
|
ad2antrr |
|
| 49 |
45 48
|
syl5 |
|
| 50 |
49
|
necon1bd |
|
| 51 |
44 50
|
syl5 |
|
| 52 |
42 51
|
impbid |
|
| 53 |
29 52
|
bitrid |
|
| 54 |
31
|
eleq2i |
|
| 55 |
|
ecdmn0 |
|
| 56 |
|
opelxp |
|
| 57 |
54 55 56
|
3bitr3i |
|
| 58 |
57
|
simprbi |
|
| 59 |
58
|
necon1bi |
|
| 60 |
59
|
adantl |
|
| 61 |
60
|
eqeq1d |
|
| 62 |
|
simpl |
|
| 63 |
2
|
ndmov |
|
| 64 |
62 63
|
nsyl5 |
|
| 65 |
64
|
adantl |
|
| 66 |
65
|
eqeq2d |
|
| 67 |
53 61 66
|
3bitr4d |
|
| 68 |
28 67
|
pm2.61dan |
|