Metamath Proof Explorer


Theorem eceqoveq

Description: Equality of equivalence relation in terms of an operation. (Contributed by NM, 15-Feb-1996) (Proof shortened by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses eceqoveq.5 ˙ErS×S
eceqoveq.7 dom+˙=S×S
eceqoveq.8 ¬S
eceqoveq.9 xSySx+˙yS
eceqoveq.10 ASBSCSDSAB˙CDA+˙D=B+˙C
Assertion eceqoveq ASCSAB˙=CD˙A+˙D=B+˙C

Proof

Step Hyp Ref Expression
1 eceqoveq.5 ˙ErS×S
2 eceqoveq.7 dom+˙=S×S
3 eceqoveq.8 ¬S
4 eceqoveq.9 xSySx+˙yS
5 eceqoveq.10 ASBSCSDSAB˙CDA+˙D=B+˙C
6 opelxpi ASBSABS×S
7 6 ad2antrr ASBSCSAB˙=CD˙ABS×S
8 1 a1i ASBSCSAB˙=CD˙˙ErS×S
9 simpr ASBSCSAB˙=CD˙AB˙=CD˙
10 8 9 ereldm ASBSCSAB˙=CD˙ABS×SCDS×S
11 7 10 mpbid ASBSCSAB˙=CD˙CDS×S
12 opelxp2 CDS×SDS
13 11 12 syl ASBSCSAB˙=CD˙DS
14 13 ex ASBSCSAB˙=CD˙DS
15 4 caovcl BSCSB+˙CS
16 eleq1 A+˙D=B+˙CA+˙DSB+˙CS
17 15 16 imbitrrid A+˙D=B+˙CBSCSA+˙DS
18 2 3 ndmovrcl A+˙DSASDS
19 18 simprd A+˙DSDS
20 17 19 syl6com BSCSA+˙D=B+˙CDS
21 20 adantll ASBSCSA+˙D=B+˙CDS
22 1 a1i ASBSCSDS˙ErS×S
23 6 adantr ASBSCSDSABS×S
24 22 23 erth ASBSCSDSAB˙CDAB˙=CD˙
25 24 5 bitr3d ASBSCSDSAB˙=CD˙A+˙D=B+˙C
26 25 expr ASBSCSDSAB˙=CD˙A+˙D=B+˙C
27 14 21 26 pm5.21ndd ASBSCSAB˙=CD˙A+˙D=B+˙C
28 27 an32s ASCSBSAB˙=CD˙A+˙D=B+˙C
29 eqcom =CD˙CD˙=
30 erdm ˙ErS×Sdom˙=S×S
31 1 30 ax-mp dom˙=S×S
32 31 eleq2i CDdom˙CDS×S
33 ecdmn0 CDdom˙CD˙
34 opelxp CDS×SCSDS
35 32 33 34 3bitr3i CD˙CSDS
36 35 simplbi2 CSDSCD˙
37 36 ad2antlr ASCS¬BSDSCD˙
38 37 necon2bd ASCS¬BSCD˙=¬DS
39 simpr ASDSDS
40 2 ndmov ¬ASDSA+˙D=
41 39 40 nsyl5 ¬DSA+˙D=
42 38 41 syl6 ASCS¬BSCD˙=A+˙D=
43 eleq1 A+˙D=A+˙DSS
44 3 43 mtbiri A+˙D=¬A+˙DS
45 35 simprbi CD˙DS
46 4 caovcl ASDSA+˙DS
47 46 ex ASDSA+˙DS
48 47 ad2antrr ASCS¬BSDSA+˙DS
49 45 48 syl5 ASCS¬BSCD˙A+˙DS
50 49 necon1bd ASCS¬BS¬A+˙DSCD˙=
51 44 50 syl5 ASCS¬BSA+˙D=CD˙=
52 42 51 impbid ASCS¬BSCD˙=A+˙D=
53 29 52 bitrid ASCS¬BS=CD˙A+˙D=
54 31 eleq2i ABdom˙ABS×S
55 ecdmn0 ABdom˙AB˙
56 opelxp ABS×SASBS
57 54 55 56 3bitr3i AB˙ASBS
58 57 simprbi AB˙BS
59 58 necon1bi ¬BSAB˙=
60 59 adantl ASCS¬BSAB˙=
61 60 eqeq1d ASCS¬BSAB˙=CD˙=CD˙
62 simpl BSCSBS
63 2 ndmov ¬BSCSB+˙C=
64 62 63 nsyl5 ¬BSB+˙C=
65 64 adantl ASCS¬BSB+˙C=
66 65 eqeq2d ASCS¬BSA+˙D=B+˙CA+˙D=
67 53 61 66 3bitr4d ASCS¬BSAB˙=CD˙A+˙D=B+˙C
68 28 67 pm2.61dan ASCSAB˙=CD˙A+˙D=B+˙C