Metamath Proof Explorer


Theorem ellimcabssub0

Description: An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ellimcabssub0.f F=xAB
ellimcabssub0.g G=xABC
ellimcabssub0.a φA
ellimcabssub0.b φxAB
ellimcabssub0.p φD
ellimcabssub0.c φC
Assertion ellimcabssub0 φCFlimD0GlimD

Proof

Step Hyp Ref Expression
1 ellimcabssub0.f F=xAB
2 ellimcabssub0.g G=xABC
3 ellimcabssub0.a φA
4 ellimcabssub0.b φxAB
5 ellimcabssub0.p φD
6 ellimcabssub0.c φC
7 0cnd φ0
8 6 7 2thd φC0
9 6 adantr φxAC
10 4 9 subcld φxABC
11 10 2 fmptd φG:A
12 11 ffvelcdmda φzAGz
13 12 subid1d φzAGz0=Gz
14 simpr φzAzA
15 csbov1g zVz/xBC=z/xBC
16 15 elv z/xBC=z/xBC
17 sban zxφxAzxφzxxA
18 nfv xφ
19 18 sbf zxφφ
20 clelsb1 zxxAzA
21 19 20 anbi12i zxφzxxAφzA
22 17 21 bitri zxφxAφzA
23 4 nfth xφxAB
24 23 sbf zxφxABφxAB
25 sbim zxφxABzxφxAzxB
26 24 25 sylbb1 φxABzxφxAzxB
27 22 26 biimtrrid φxABφzAzxB
28 4 27 ax-mp φzAzxB
29 sbsbc zxB[˙z/x]˙B
30 sbcel1g zV[˙z/x]˙Bz/xB
31 30 elv [˙z/x]˙Bz/xB
32 29 31 bitri zxBz/xB
33 28 32 sylib φzAz/xB
34 6 adantr φzAC
35 33 34 subcld φzAz/xBC
36 16 35 eqeltrid φzAz/xBC
37 2 fvmpts zAz/xBCGz=z/xBC
38 14 36 37 syl2anc φzAGz=z/xBC
39 1 fvmpts zAz/xBFz=z/xB
40 14 33 39 syl2anc φzAFz=z/xB
41 40 oveq1d φzAFzC=z/xBC
42 16 41 eqtr4id φzAz/xBC=FzC
43 13 38 42 3eqtrrd φzAFzC=Gz0
44 43 fveq2d φzAFzC=Gz0
45 44 breq1d φzAFzC<yGz0<y
46 45 imbi2d φzAzDzD<wFzC<yzDzD<wGz0<y
47 46 ralbidva φzAzDzD<wFzC<yzAzDzD<wGz0<y
48 47 rexbidv φw+zAzDzD<wFzC<yw+zAzDzD<wGz0<y
49 48 ralbidv φy+w+zAzDzD<wFzC<yy+w+zAzDzD<wGz0<y
50 8 49 anbi12d φCy+w+zAzDzD<wFzC<y0y+w+zAzDzD<wGz0<y
51 4 1 fmptd φF:A
52 51 3 5 ellimc3 φCFlimDCy+w+zAzDzD<wFzC<y
53 11 3 5 ellimc3 φ0GlimD0y+w+zAzDzD<wGz0<y
54 50 52 53 3bitr4d φCFlimD0GlimD