Description: An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ellimcabssub0.f | |
|
ellimcabssub0.g | |
||
ellimcabssub0.a | |
||
ellimcabssub0.b | |
||
ellimcabssub0.p | |
||
ellimcabssub0.c | |
||
Assertion | ellimcabssub0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellimcabssub0.f | |
|
2 | ellimcabssub0.g | |
|
3 | ellimcabssub0.a | |
|
4 | ellimcabssub0.b | |
|
5 | ellimcabssub0.p | |
|
6 | ellimcabssub0.c | |
|
7 | 0cnd | |
|
8 | 6 7 | 2thd | |
9 | 6 | adantr | |
10 | 4 9 | subcld | |
11 | 10 2 | fmptd | |
12 | 11 | ffvelcdmda | |
13 | 12 | subid1d | |
14 | simpr | |
|
15 | csbov1g | |
|
16 | 15 | elv | |
17 | sban | |
|
18 | nfv | |
|
19 | 18 | sbf | |
20 | clelsb1 | |
|
21 | 19 20 | anbi12i | |
22 | 17 21 | bitri | |
23 | 4 | nfth | |
24 | 23 | sbf | |
25 | sbim | |
|
26 | 24 25 | sylbb1 | |
27 | 22 26 | biimtrrid | |
28 | 4 27 | ax-mp | |
29 | sbsbc | |
|
30 | sbcel1g | |
|
31 | 30 | elv | |
32 | 29 31 | bitri | |
33 | 28 32 | sylib | |
34 | 6 | adantr | |
35 | 33 34 | subcld | |
36 | 16 35 | eqeltrid | |
37 | 2 | fvmpts | |
38 | 14 36 37 | syl2anc | |
39 | 1 | fvmpts | |
40 | 14 33 39 | syl2anc | |
41 | 40 | oveq1d | |
42 | 16 41 | eqtr4id | |
43 | 13 38 42 | 3eqtrrd | |
44 | 43 | fveq2d | |
45 | 44 | breq1d | |
46 | 45 | imbi2d | |
47 | 46 | ralbidva | |
48 | 47 | rexbidv | |
49 | 48 | ralbidv | |
50 | 8 49 | anbi12d | |
51 | 4 1 | fmptd | |
52 | 51 3 5 | ellimc3 | |
53 | 11 3 5 | ellimc3 | |
54 | 50 52 53 | 3bitr4d | |