| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mstapst.p |  | 
						
							| 2 |  | mstapst.s |  | 
						
							| 3 |  | elmsta.v |  | 
						
							| 4 |  | elmsta.z |  | 
						
							| 5 | 1 2 | mstapst |  | 
						
							| 6 | 5 | sseli |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 3 1 7 4 | msrval |  | 
						
							| 9 | 6 8 | syl |  | 
						
							| 10 | 7 2 | msrid |  | 
						
							| 11 | 9 10 | eqtr3d |  | 
						
							| 12 | 11 | fveq2d |  | 
						
							| 13 | 12 | fveq2d |  | 
						
							| 14 |  | inss1 |  | 
						
							| 15 | 1 | mpstrcl |  | 
						
							| 16 | 6 15 | syl |  | 
						
							| 17 | 16 | simp1d |  | 
						
							| 18 |  | ssexg |  | 
						
							| 19 | 14 17 18 | sylancr |  | 
						
							| 20 | 16 | simp2d |  | 
						
							| 21 | 16 | simp3d |  | 
						
							| 22 |  | ot1stg |  | 
						
							| 23 | 19 20 21 22 | syl3anc |  | 
						
							| 24 |  | ot1stg |  | 
						
							| 25 | 16 24 | syl |  | 
						
							| 26 | 13 23 25 | 3eqtr3d |  | 
						
							| 27 |  | inss2 |  | 
						
							| 28 | 26 27 | eqsstrrdi |  | 
						
							| 29 | 6 28 | jca |  | 
						
							| 30 | 8 | adantr |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 |  | dfss2 |  | 
						
							| 33 | 31 32 | sylib |  | 
						
							| 34 | 33 | oteq1d |  | 
						
							| 35 | 30 34 | eqtrd |  | 
						
							| 36 | 1 7 | msrf |  | 
						
							| 37 |  | ffn |  | 
						
							| 38 | 36 37 | ax-mp |  | 
						
							| 39 |  | simpl |  | 
						
							| 40 |  | fnfvelrn |  | 
						
							| 41 | 38 39 40 | sylancr |  | 
						
							| 42 | 35 41 | eqeltrrd |  | 
						
							| 43 | 7 2 | mstaval |  | 
						
							| 44 | 42 43 | eleqtrrdi |  | 
						
							| 45 | 29 44 | impbii |  |