Description: Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mstapst.p | |
|
mstapst.s | |
||
elmsta.v | |
||
elmsta.z | |
||
Assertion | elmsta | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mstapst.p | |
|
2 | mstapst.s | |
|
3 | elmsta.v | |
|
4 | elmsta.z | |
|
5 | 1 2 | mstapst | |
6 | 5 | sseli | |
7 | eqid | |
|
8 | 3 1 7 4 | msrval | |
9 | 6 8 | syl | |
10 | 7 2 | msrid | |
11 | 9 10 | eqtr3d | |
12 | 11 | fveq2d | |
13 | 12 | fveq2d | |
14 | inss1 | |
|
15 | 1 | mpstrcl | |
16 | 6 15 | syl | |
17 | 16 | simp1d | |
18 | ssexg | |
|
19 | 14 17 18 | sylancr | |
20 | 16 | simp2d | |
21 | 16 | simp3d | |
22 | ot1stg | |
|
23 | 19 20 21 22 | syl3anc | |
24 | ot1stg | |
|
25 | 16 24 | syl | |
26 | 13 23 25 | 3eqtr3d | |
27 | inss2 | |
|
28 | 26 27 | eqsstrrdi | |
29 | 6 28 | jca | |
30 | 8 | adantr | |
31 | simpr | |
|
32 | df-ss | |
|
33 | 31 32 | sylib | |
34 | 33 | oteq1d | |
35 | 30 34 | eqtrd | |
36 | 1 7 | msrf | |
37 | ffn | |
|
38 | 36 37 | ax-mp | |
39 | simpl | |
|
40 | fnfvelrn | |
|
41 | 38 39 40 | sylancr | |
42 | 35 41 | eqeltrrd | |
43 | 7 2 | mstaval | |
44 | 42 43 | eleqtrrdi | |
45 | 29 44 | impbii | |