Metamath Proof Explorer


Theorem elwwlks2

Description: A walk of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 21-Feb-2018) (Revised by AV, 17-May-2021) (Proof shortened by AV, 14-Mar-2022)

Ref Expression
Hypothesis elwwlks2.v V=VtxG
Assertion elwwlks2 GUPGraphW2WWalksNGaVbVcVW=⟨“abc”⟩fpfWalksGpf=2a=p0b=p1c=p2

Proof

Step Hyp Ref Expression
1 elwwlks2.v V=VtxG
2 1 wwlksnwwlksnon W2WWalksNGaVcVWa2WWalksNOnGc
3 2 a1i GUPGraphW2WWalksNGaVcVWa2WWalksNOnGc
4 1 elwwlks2on GUPGraphaVcVWa2WWalksNOnGcbVW=⟨“abc”⟩ffWalksGWf=2
5 4 3expb GUPGraphaVcVWa2WWalksNOnGcbVW=⟨“abc”⟩ffWalksGWf=2
6 5 2rexbidva GUPGraphaVcVWa2WWalksNOnGcaVcVbVW=⟨“abc”⟩ffWalksGWf=2
7 rexcom cVbVW=⟨“abc”⟩ffWalksGWf=2bVcVW=⟨“abc”⟩ffWalksGWf=2
8 s3cli ⟨“abc”⟩WordV
9 8 a1i GUPGraphaVbVcVW=⟨“abc”⟩⟨“abc”⟩WordV
10 simplr GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩W=⟨“abc”⟩
11 simpr GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩p=⟨“abc”⟩
12 10 11 eqtr4d GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩W=p
13 12 breq2d GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩fWalksGWfWalksGp
14 13 biimpd GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩fWalksGWfWalksGp
15 14 com12 fWalksGWGUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩fWalksGp
16 15 adantr fWalksGWf=2GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩fWalksGp
17 16 impcom GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩fWalksGWf=2fWalksGp
18 simprr GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩fWalksGWf=2f=2
19 vex aV
20 s3fv0 aV⟨“abc”⟩0=a
21 20 eqcomd aVa=⟨“abc”⟩0
22 19 21 mp1i p=⟨“abc”⟩a=⟨“abc”⟩0
23 fveq1 p=⟨“abc”⟩p0=⟨“abc”⟩0
24 22 23 eqtr4d p=⟨“abc”⟩a=p0
25 vex bV
26 s3fv1 bV⟨“abc”⟩1=b
27 26 eqcomd bVb=⟨“abc”⟩1
28 25 27 mp1i p=⟨“abc”⟩b=⟨“abc”⟩1
29 fveq1 p=⟨“abc”⟩p1=⟨“abc”⟩1
30 28 29 eqtr4d p=⟨“abc”⟩b=p1
31 vex cV
32 s3fv2 cV⟨“abc”⟩2=c
33 32 eqcomd cVc=⟨“abc”⟩2
34 31 33 mp1i p=⟨“abc”⟩c=⟨“abc”⟩2
35 fveq1 p=⟨“abc”⟩p2=⟨“abc”⟩2
36 34 35 eqtr4d p=⟨“abc”⟩c=p2
37 24 30 36 3jca p=⟨“abc”⟩a=p0b=p1c=p2
38 37 adantl GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩a=p0b=p1c=p2
39 38 adantr GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩fWalksGWf=2a=p0b=p1c=p2
40 17 18 39 3jca GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩fWalksGWf=2fWalksGpf=2a=p0b=p1c=p2
41 40 ex GUPGraphaVbVcVW=⟨“abc”⟩p=⟨“abc”⟩fWalksGWf=2fWalksGpf=2a=p0b=p1c=p2
42 9 41 spcimedv GUPGraphaVbVcVW=⟨“abc”⟩fWalksGWf=2pfWalksGpf=2a=p0b=p1c=p2
43 wlklenvp1 fWalksGpp=f+1
44 simpl p=f+1f=2p=f+1
45 oveq1 f=2f+1=2+1
46 45 adantl p=f+1f=2f+1=2+1
47 44 46 eqtrd p=f+1f=2p=2+1
48 47 adantl fWalksGpp=f+1f=2p=2+1
49 2p1e3 2+1=3
50 48 49 eqtrdi fWalksGpp=f+1f=2p=3
51 50 exp32 fWalksGpp=f+1f=2p=3
52 43 51 mpd fWalksGpf=2p=3
53 52 adantr fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2p=3
54 53 imp fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2p=3
55 eqcom a=p0p0=a
56 55 biimpi a=p0p0=a
57 eqcom b=p1p1=b
58 57 biimpi b=p1p1=b
59 eqcom c=p2p2=c
60 59 biimpi c=p2p2=c
61 56 58 60 3anim123i a=p0b=p1c=p2p0=ap1=bp2=c
62 54 61 anim12i fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2a=p0b=p1c=p2p=3p0=ap1=bp2=c
63 1 wlkpwrd fWalksGppWordV
64 simpr GUPGraphaVaV
65 64 anim1i GUPGraphaVbVcVaVbVcV
66 3anass aVbVcVaVbVcV
67 65 66 sylibr GUPGraphaVbVcVaVbVcV
68 67 adantr GUPGraphaVbVcVW=⟨“abc”⟩aVbVcV
69 63 68 anim12i fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩pWordVaVbVcV
70 69 ad2antrr fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2a=p0b=p1c=p2pWordVaVbVcV
71 eqwrds3 pWordVaVbVcVp=⟨“abc”⟩p=3p0=ap1=bp2=c
72 70 71 syl fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2a=p0b=p1c=p2p=⟨“abc”⟩p=3p0=ap1=bp2=c
73 62 72 mpbird fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2a=p0b=p1c=p2p=⟨“abc”⟩
74 simprr fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩W=⟨“abc”⟩
75 74 ad2antrr fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2a=p0b=p1c=p2W=⟨“abc”⟩
76 73 75 eqtr4d fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2a=p0b=p1c=p2p=W
77 76 breq2d fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2a=p0b=p1c=p2fWalksGpfWalksGW
78 77 biimpd fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2a=p0b=p1c=p2fWalksGpfWalksGW
79 simplr fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2a=p0b=p1c=p2f=2
80 78 79 jctird fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2a=p0b=p1c=p2fWalksGpfWalksGWf=2
81 80 exp41 fWalksGpGUPGraphaVbVcVW=⟨“abc”⟩f=2a=p0b=p1c=p2fWalksGpfWalksGWf=2
82 81 com25 fWalksGpfWalksGpf=2a=p0b=p1c=p2GUPGraphaVbVcVW=⟨“abc”⟩fWalksGWf=2
83 82 pm2.43i fWalksGpf=2a=p0b=p1c=p2GUPGraphaVbVcVW=⟨“abc”⟩fWalksGWf=2
84 83 3imp fWalksGpf=2a=p0b=p1c=p2GUPGraphaVbVcVW=⟨“abc”⟩fWalksGWf=2
85 84 com12 GUPGraphaVbVcVW=⟨“abc”⟩fWalksGpf=2a=p0b=p1c=p2fWalksGWf=2
86 85 exlimdv GUPGraphaVbVcVW=⟨“abc”⟩pfWalksGpf=2a=p0b=p1c=p2fWalksGWf=2
87 42 86 impbid GUPGraphaVbVcVW=⟨“abc”⟩fWalksGWf=2pfWalksGpf=2a=p0b=p1c=p2
88 87 exbidv GUPGraphaVbVcVW=⟨“abc”⟩ffWalksGWf=2fpfWalksGpf=2a=p0b=p1c=p2
89 88 pm5.32da GUPGraphaVbVcVW=⟨“abc”⟩ffWalksGWf=2W=⟨“abc”⟩fpfWalksGpf=2a=p0b=p1c=p2
90 89 2rexbidva GUPGraphaVbVcVW=⟨“abc”⟩ffWalksGWf=2bVcVW=⟨“abc”⟩fpfWalksGpf=2a=p0b=p1c=p2
91 7 90 bitrid GUPGraphaVcVbVW=⟨“abc”⟩ffWalksGWf=2bVcVW=⟨“abc”⟩fpfWalksGpf=2a=p0b=p1c=p2
92 91 rexbidva GUPGraphaVcVbVW=⟨“abc”⟩ffWalksGWf=2aVbVcVW=⟨“abc”⟩fpfWalksGpf=2a=p0b=p1c=p2
93 3 6 92 3bitrd GUPGraphW2WWalksNGaVbVcVW=⟨“abc”⟩fpfWalksGpf=2a=p0b=p1c=p2