Description: The strong form of the Axiom of Regularity (no sethood requirement on A ), with the axiom itself present as an antecedent. See also zfregs . (Contributed by Mario Carneiro, 22-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | epfrs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 | |
|
2 | snssi | |
|
3 | 2 | anim2i | |
4 | ssin | |
|
5 | vex | |
|
6 | 5 | snss | |
7 | 4 6 | bitr4i | |
8 | 3 7 | sylib | |
9 | 8 | ne0d | |
10 | inss2 | |
|
11 | vex | |
|
12 | 11 | inex1 | |
13 | 12 | epfrc | |
14 | 10 13 | mp3an2 | |
15 | elin | |
|
16 | 15 | anbi1i | |
17 | anass | |
|
18 | 16 17 | bitri | |
19 | n0 | |
|
20 | elinel1 | |
|
21 | 20 | ancri | |
22 | trel | |
|
23 | inass | |
|
24 | incom | |
|
25 | 24 | ineq2i | |
26 | 23 25 | eqtri | |
27 | 26 | eleq2i | |
28 | elin | |
|
29 | 27 28 | bitr2i | |
30 | ne0i | |
|
31 | 29 30 | sylbi | |
32 | 31 | ex | |
33 | 22 32 | syl6 | |
34 | 33 | expd | |
35 | 34 | com34 | |
36 | 35 | impd | |
37 | 21 36 | syl5 | |
38 | 37 | exlimdv | |
39 | 19 38 | biimtrid | |
40 | 39 | com23 | |
41 | 40 | imp | |
42 | 41 | necon4d | |
43 | 42 | anim2d | |
44 | 43 | expimpd | |
45 | 18 44 | biimtrid | |
46 | 45 | reximdv2 | |
47 | 14 46 | syl5 | |
48 | 47 | expcomd | |
49 | 9 48 | syl5 | |
50 | 49 | expd | |
51 | 50 | impcom | |
52 | 51 | 3adant3 | |
53 | vsnex | |
|
54 | 53 | tz9.1 | |
55 | 52 54 | exlimiiv | |
56 | 55 | exlimiv | |
57 | 1 56 | sylbi | |
58 | 57 | impcom | |