Metamath Proof Explorer


Theorem epfrs

Description: The strong form of the Axiom of Regularity (no sethood requirement on A ), with the axiom itself present as an antecedent. See also zfregs . (Contributed by Mario Carneiro, 22-Mar-2013)

Ref Expression
Assertion epfrs EFrAAxAxA=

Proof

Step Hyp Ref Expression
1 n0 AzzA
2 snssi zAzA
3 2 anim2i zyzAzyzA
4 ssin zyzAzyA
5 vex zV
6 5 snss zyAzyA
7 4 6 bitr4i zyzAzyA
8 3 7 sylib zyzAzyA
9 8 ne0d zyzAyA
10 inss2 yAA
11 vex yV
12 11 inex1 yAV
13 12 epfrc EFrAyAAyAxyAyAx=
14 10 13 mp3an2 EFrAyAxyAyAx=
15 elin xyAxyxA
16 15 anbi1i xyAyAx=xyxAyAx=
17 anass xyxAyAx=xyxAyAx=
18 16 17 bitri xyAyAx=xyxAyAx=
19 n0 xAwwxA
20 elinel1 wxAwx
21 20 ancri wxAwxwxA
22 trel Trywxxywy
23 inass yAx=yAx
24 incom Ax=xA
25 24 ineq2i yAx=yxA
26 23 25 eqtri yAx=yxA
27 26 eleq2i wyAxwyxA
28 elin wyxAwywxA
29 27 28 bitr2i wywxAwyAx
30 ne0i wyAxyAx
31 29 30 sylbi wywxAyAx
32 31 ex wywxAyAx
33 22 32 syl6 TrywxxywxAyAx
34 33 expd TrywxxywxAyAx
35 34 com34 TrywxwxAxyyAx
36 35 impd TrywxwxAxyyAx
37 21 36 syl5 TrywxAxyyAx
38 37 exlimdv TrywwxAxyyAx
39 19 38 biimtrid TryxAxyyAx
40 39 com23 TryxyxAyAx
41 40 imp TryxyxAyAx
42 41 necon4d TryxyyAx=xA=
43 42 anim2d TryxyxAyAx=xAxA=
44 43 expimpd TryxyxAyAx=xAxA=
45 18 44 biimtrid TryxyAyAx=xAxA=
46 45 reximdv2 TryxyAyAx=xAxA=
47 14 46 syl5 TryEFrAyAxAxA=
48 47 expcomd TryyAEFrAxAxA=
49 9 48 syl5 TryzyzAEFrAxAxA=
50 49 expd TryzyzAEFrAxAxA=
51 50 impcom zyTryzAEFrAxAxA=
52 51 3adant3 zyTrywzwTrwywzAEFrAxAxA=
53 vsnex zV
54 53 tz9.1 yzyTrywzwTrwyw
55 52 54 exlimiiv zAEFrAxAxA=
56 55 exlimiv zzAEFrAxAxA=
57 1 56 sylbi AEFrAxAxA=
58 57 impcom EFrAAxAxA=