Metamath Proof Explorer


Theorem erdszelem7

Description: Lemma for erdsze . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze.n φN
erdsze.f φF:1N1-1
erdszelem.k K=x1Nsup.y𝒫1x|FyIsom<,OyFyxy<
erdszelem.o OOr
erdszelem.a φA1N
erdszelem7.r φR
erdszelem7.m φ¬KA1R1
Assertion erdszelem7 φs𝒫1NRsFsIsom<,OsFs

Proof

Step Hyp Ref Expression
1 erdsze.n φN
2 erdsze.f φF:1N1-1
3 erdszelem.k K=x1Nsup.y𝒫1x|FyIsom<,OyFyxy<
4 erdszelem.o OOr
5 erdszelem.a φA1N
6 erdszelem7.r φR
7 erdszelem7.m φ¬KA1R1
8 hashf .:V0+∞
9 ffun .:V0+∞Fun.
10 8 9 ax-mp Fun.
11 1 2 3 4 erdszelem5 φA1NKA.y𝒫1A|FyIsom<,OyFyAy
12 5 11 mpdan φKA.y𝒫1A|FyIsom<,OyFyAy
13 fvelima Fun.KA.y𝒫1A|FyIsom<,OyFyAysy𝒫1A|FyIsom<,OyFyAys=KA
14 10 12 13 sylancr φsy𝒫1A|FyIsom<,OyFyAys=KA
15 eqid y𝒫1A|FyIsom<,OyFyAy=y𝒫1A|FyIsom<,OyFyAy
16 15 erdszelem1 sy𝒫1A|FyIsom<,OyFyAys1AFsIsom<,OsFsAs
17 simprl1 φs1AFsIsom<,OsFsAss=KAs1A
18 elfzuz3 A1NNA
19 fzss2 NA1A1N
20 5 18 19 3syl φ1A1N
21 20 adantr φs1AFsIsom<,OsFsAss=KA1A1N
22 17 21 sstrd φs1AFsIsom<,OsFsAss=KAs1N
23 velpw s𝒫1Ns1N
24 22 23 sylibr φs1AFsIsom<,OsFsAss=KAs𝒫1N
25 1 2 3 4 erdszelem6 φK:1N
26 25 5 ffvelcdmd φKA
27 nnuz =1
28 26 27 eleqtrdi φKA1
29 nnz RR
30 peano2zm RR1
31 6 29 30 3syl φR1
32 elfz5 KA1R1KA1R1KAR1
33 28 31 32 syl2anc φKA1R1KAR1
34 nnltlem1 KARKA<RKAR1
35 26 6 34 syl2anc φKA<RKAR1
36 33 35 bitr4d φKA1R1KA<R
37 7 36 mtbid φ¬KA<R
38 6 nnred φR
39 15 erdszelem2 .y𝒫1A|FyIsom<,OyFyAyFin.y𝒫1A|FyIsom<,OyFyAy
40 39 simpri .y𝒫1A|FyIsom<,OyFyAy
41 nnssre
42 40 41 sstri .y𝒫1A|FyIsom<,OyFyAy
43 42 12 sselid φKA
44 38 43 lenltd φRKA¬KA<R
45 37 44 mpbird φRKA
46 45 adantr φs1AFsIsom<,OsFsAss=KARKA
47 simprr φs1AFsIsom<,OsFsAss=KAs=KA
48 46 47 breqtrrd φs1AFsIsom<,OsFsAss=KARs
49 simprl2 φs1AFsIsom<,OsFsAss=KAFsIsom<,OsFs
50 24 48 49 jca32 φs1AFsIsom<,OsFsAss=KAs𝒫1NRsFsIsom<,OsFs
51 50 expr φs1AFsIsom<,OsFsAss=KAs𝒫1NRsFsIsom<,OsFs
52 16 51 sylan2b φsy𝒫1A|FyIsom<,OyFyAys=KAs𝒫1NRsFsIsom<,OsFs
53 52 expimpd φsy𝒫1A|FyIsom<,OyFyAys=KAs𝒫1NRsFsIsom<,OsFs
54 53 reximdv2 φsy𝒫1A|FyIsom<,OyFyAys=KAs𝒫1NRsFsIsom<,OsFs
55 14 54 mpd φs𝒫1NRsFsIsom<,OsFs