Description: If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumadd.0 | |
|
esumadd.1 | |
||
esumadd.2 | |
||
esumle.3 | |
||
Assertion | esumle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumadd.0 | |
|
2 | esumadd.1 | |
|
3 | esumadd.2 | |
|
4 | esumle.3 | |
|
5 | iccssxr | |
|
6 | 2 | ralrimiva | |
7 | nfcv | |
|
8 | 7 | esumcl | |
9 | 1 6 8 | syl2anc | |
10 | 5 9 | sselid | |
11 | 5 3 | sselid | |
12 | 5 2 | sselid | |
13 | 12 | xnegcld | |
14 | 11 13 | xaddcld | |
15 | xsubge0 | |
|
16 | 11 12 15 | syl2anc | |
17 | 4 16 | mpbird | |
18 | pnfge | |
|
19 | 14 18 | syl | |
20 | 0xr | |
|
21 | pnfxr | |
|
22 | elicc1 | |
|
23 | 20 21 22 | mp2an | |
24 | 14 17 19 23 | syl3anbrc | |
25 | 24 | ralrimiva | |
26 | 7 | esumcl | |
27 | 1 25 26 | syl2anc | |
28 | 5 27 | sselid | |
29 | 20 | a1i | |
30 | 21 | a1i | |
31 | elicc4 | |
|
32 | 29 30 28 31 | syl3anc | |
33 | 27 32 | mpbid | |
34 | 33 | simpld | |
35 | xraddge02 | |
|
36 | 35 | imp | |
37 | 10 28 34 36 | syl21anc | |
38 | xaddcom | |
|
39 | 10 28 38 | syl2anc | |
40 | 37 39 | breqtrd | |
41 | 1 24 2 | esumadd | |
42 | xrge0npcan | |
|
43 | 3 2 4 42 | syl3anc | |
44 | 43 | esumeq2dv | |
45 | 41 44 | eqtr3d | |
46 | 40 45 | breqtrd | |