Description: The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017) (Proof shortened by AV, 12-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumlub.f | |
|
esumlub.0 | |
||
esumlub.1 | |
||
esumlub.2 | |
||
esumlub.3 | |
||
Assertion | esumlub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumlub.f | |
|
2 | esumlub.0 | |
|
3 | esumlub.1 | |
|
4 | esumlub.2 | |
|
5 | esumlub.3 | |
|
6 | nfcv | |
|
7 | eqidd | |
|
8 | 1 6 2 3 7 | esumval | |
9 | 8 | breq2d | |
10 | iccssxr | |
|
11 | xrge0base | |
|
12 | xrge0cmn | |
|
13 | 12 | a1i | |
14 | inss2 | |
|
15 | simpr | |
|
16 | 14 15 | sselid | |
17 | nfv | |
|
18 | 1 17 | nfan | |
19 | simpll | |
|
20 | inss1 | |
|
21 | 20 | sseli | |
22 | 21 | ad2antlr | |
23 | 22 | elpwid | |
24 | simpr | |
|
25 | 23 24 | sseldd | |
26 | 19 25 3 | syl2anc | |
27 | 26 | ex | |
28 | 18 27 | ralrimi | |
29 | 11 13 16 28 | gsummptcl | |
30 | 10 29 | sselid | |
31 | 30 | ralrimiva | |
32 | eqid | |
|
33 | 32 | rnmptss | |
34 | 31 33 | syl | |
35 | supxrlub | |
|
36 | 34 4 35 | syl2anc | |
37 | 9 36 | bitrd | |
38 | 5 37 | mpbid | |
39 | ovex | |
|
40 | 39 | a1i | |
41 | mpteq1 | |
|
42 | 41 | oveq2d | |
43 | 42 | cbvmptv | |
44 | 43 39 | elrnmpti | |
45 | 44 | a1i | |
46 | simpr | |
|
47 | 46 | breq2d | |
48 | 40 45 47 | rexxfr2d | |
49 | 38 48 | mpbid | |
50 | nfv | |
|
51 | 1 50 | nfan | |
52 | simpr | |
|
53 | 14 52 | sselid | |
54 | simpll | |
|
55 | 20 | sseli | |
56 | 55 | ad2antlr | |
57 | 56 | elpwid | |
58 | simpr | |
|
59 | 57 58 | sseldd | |
60 | 54 59 3 | syl2anc | |
61 | 51 53 60 | gsumesum | |
62 | 61 | breq2d | |
63 | 62 | biimpd | |
64 | 63 | reximdva | |
65 | 49 64 | mpd | |