Metamath Proof Explorer


Theorem esumlub

Description: The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017) (Proof shortened by AV, 12-Dec-2019)

Ref Expression
Hypotheses esumlub.f kφ
esumlub.0 φAV
esumlub.1 φkAB0+∞
esumlub.2 φX*
esumlub.3 φX<*kAB
Assertion esumlub φa𝒫AFinX<*kaB

Proof

Step Hyp Ref Expression
1 esumlub.f kφ
2 esumlub.0 φAV
3 esumlub.1 φkAB0+∞
4 esumlub.2 φX*
5 esumlub.3 φX<*kAB
6 nfcv _kA
7 eqidd φx𝒫AFin𝑠*𝑠0+∞kxB=𝑠*𝑠0+∞kxB
8 1 6 2 3 7 esumval φ*kAB=supranx𝒫AFin𝑠*𝑠0+∞kxB*<
9 8 breq2d φX<*kABX<supranx𝒫AFin𝑠*𝑠0+∞kxB*<
10 iccssxr 0+∞*
11 xrge0base 0+∞=Base𝑠*𝑠0+∞
12 xrge0cmn 𝑠*𝑠0+∞CMnd
13 12 a1i φx𝒫AFin𝑠*𝑠0+∞CMnd
14 inss2 𝒫AFinFin
15 simpr φx𝒫AFinx𝒫AFin
16 14 15 sselid φx𝒫AFinxFin
17 nfv kx𝒫AFin
18 1 17 nfan kφx𝒫AFin
19 simpll φx𝒫AFinkxφ
20 inss1 𝒫AFin𝒫A
21 20 sseli x𝒫AFinx𝒫A
22 21 ad2antlr φx𝒫AFinkxx𝒫A
23 22 elpwid φx𝒫AFinkxxA
24 simpr φx𝒫AFinkxkx
25 23 24 sseldd φx𝒫AFinkxkA
26 19 25 3 syl2anc φx𝒫AFinkxB0+∞
27 26 ex φx𝒫AFinkxB0+∞
28 18 27 ralrimi φx𝒫AFinkxB0+∞
29 11 13 16 28 gsummptcl φx𝒫AFin𝑠*𝑠0+∞kxB0+∞
30 10 29 sselid φx𝒫AFin𝑠*𝑠0+∞kxB*
31 30 ralrimiva φx𝒫AFin𝑠*𝑠0+∞kxB*
32 eqid x𝒫AFin𝑠*𝑠0+∞kxB=x𝒫AFin𝑠*𝑠0+∞kxB
33 32 rnmptss x𝒫AFin𝑠*𝑠0+∞kxB*ranx𝒫AFin𝑠*𝑠0+∞kxB*
34 31 33 syl φranx𝒫AFin𝑠*𝑠0+∞kxB*
35 supxrlub ranx𝒫AFin𝑠*𝑠0+∞kxB*X*X<supranx𝒫AFin𝑠*𝑠0+∞kxB*<yranx𝒫AFin𝑠*𝑠0+∞kxBX<y
36 34 4 35 syl2anc φX<supranx𝒫AFin𝑠*𝑠0+∞kxB*<yranx𝒫AFin𝑠*𝑠0+∞kxBX<y
37 9 36 bitrd φX<*kAByranx𝒫AFin𝑠*𝑠0+∞kxBX<y
38 5 37 mpbid φyranx𝒫AFin𝑠*𝑠0+∞kxBX<y
39 ovex 𝑠*𝑠0+∞kaBV
40 39 a1i φa𝒫AFin𝑠*𝑠0+∞kaBV
41 mpteq1 x=akxB=kaB
42 41 oveq2d x=a𝑠*𝑠0+∞kxB=𝑠*𝑠0+∞kaB
43 42 cbvmptv x𝒫AFin𝑠*𝑠0+∞kxB=a𝒫AFin𝑠*𝑠0+∞kaB
44 43 39 elrnmpti yranx𝒫AFin𝑠*𝑠0+∞kxBa𝒫AFiny=𝑠*𝑠0+∞kaB
45 44 a1i φyranx𝒫AFin𝑠*𝑠0+∞kxBa𝒫AFiny=𝑠*𝑠0+∞kaB
46 simpr φy=𝑠*𝑠0+∞kaBy=𝑠*𝑠0+∞kaB
47 46 breq2d φy=𝑠*𝑠0+∞kaBX<yX<𝑠*𝑠0+∞kaB
48 40 45 47 rexxfr2d φyranx𝒫AFin𝑠*𝑠0+∞kxBX<ya𝒫AFinX<𝑠*𝑠0+∞kaB
49 38 48 mpbid φa𝒫AFinX<𝑠*𝑠0+∞kaB
50 nfv ka𝒫AFin
51 1 50 nfan kφa𝒫AFin
52 simpr φa𝒫AFina𝒫AFin
53 14 52 sselid φa𝒫AFinaFin
54 simpll φa𝒫AFinkaφ
55 20 sseli a𝒫AFina𝒫A
56 55 ad2antlr φa𝒫AFinkaa𝒫A
57 56 elpwid φa𝒫AFinkaaA
58 simpr φa𝒫AFinkaka
59 57 58 sseldd φa𝒫AFinkakA
60 54 59 3 syl2anc φa𝒫AFinkaB0+∞
61 51 53 60 gsumesum φa𝒫AFin𝑠*𝑠0+∞kaB=*kaB
62 61 breq2d φa𝒫AFinX<𝑠*𝑠0+∞kaBX<*kaB
63 62 biimpd φa𝒫AFinX<𝑠*𝑠0+∞kaBX<*kaB
64 63 reximdva φa𝒫AFinX<𝑠*𝑠0+∞kaBa𝒫AFinX<*kaB
65 49 64 mpd φa𝒫AFinX<*kaB