Metamath Proof Explorer


Theorem etransclem21

Description: The N -th derivative of H applied to Y . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem21.s φS
etransclem21.x φXTopOpenfld𝑡S
etransclem21.p φP
etransclem21.h H=j0MxXxjifj=0P1P
etransclem21.j φJ0M
etransclem21.n φN0
etransclem21.y φYX
Assertion etransclem21 φSDnHJNY=ififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!YJifJ=0P1PN

Proof

Step Hyp Ref Expression
1 etransclem21.s φS
2 etransclem21.x φXTopOpenfld𝑡S
3 etransclem21.p φP
4 etransclem21.h H=j0MxXxjifj=0P1P
5 etransclem21.j φJ0M
6 etransclem21.n φN0
7 etransclem21.y φYX
8 1 2 3 4 5 6 etransclem17 φSDnHJN=xXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN
9 oveq1 x=YxJ=YJ
10 9 oveq1d x=YxJifJ=0P1PN=YJifJ=0P1PN
11 10 oveq2d x=YifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN=ifJ=0P1P!ifJ=0P1PN!YJifJ=0P1PN
12 11 ifeq2d x=YififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN=ififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!YJifJ=0P1PN
13 12 adantl φx=YififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN=ififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!YJifJ=0P1PN
14 0cnd φifJ=0P1P<N0
15 nnm1nn0 PP10
16 3 15 syl φP10
17 3 nnnn0d φP0
18 16 17 ifcld φifJ=0P1P0
19 18 faccld φifJ=0P1P!
20 19 nncnd φifJ=0P1P!
21 20 adantr φ¬ifJ=0P1P<NifJ=0P1P!
22 18 nn0zd φifJ=0P1P
23 6 nn0zd φN
24 22 23 zsubcld φifJ=0P1PN
25 24 adantr φ¬ifJ=0P1P<NifJ=0P1PN
26 6 nn0red φN
27 26 adantr φ¬ifJ=0P1P<NN
28 18 nn0red φifJ=0P1P
29 28 adantr φ¬ifJ=0P1P<NifJ=0P1P
30 simpr φ¬ifJ=0P1P<N¬ifJ=0P1P<N
31 27 29 30 nltled φ¬ifJ=0P1P<NNifJ=0P1P
32 29 27 subge0d φ¬ifJ=0P1P<N0ifJ=0P1PNNifJ=0P1P
33 31 32 mpbird φ¬ifJ=0P1P<N0ifJ=0P1PN
34 elnn0z ifJ=0P1PN0ifJ=0P1PN0ifJ=0P1PN
35 25 33 34 sylanbrc φ¬ifJ=0P1P<NifJ=0P1PN0
36 35 faccld φ¬ifJ=0P1P<NifJ=0P1PN!
37 36 nncnd φ¬ifJ=0P1P<NifJ=0P1PN!
38 36 nnne0d φ¬ifJ=0P1P<NifJ=0P1PN!0
39 21 37 38 divcld φ¬ifJ=0P1P<NifJ=0P1P!ifJ=0P1PN!
40 1 2 dvdmsscn φX
41 40 7 sseldd φY
42 5 elfzelzd φJ
43 42 zcnd φJ
44 41 43 subcld φYJ
45 44 adantr φ¬ifJ=0P1P<NYJ
46 45 35 expcld φ¬ifJ=0P1P<NYJifJ=0P1PN
47 39 46 mulcld φ¬ifJ=0P1P<NifJ=0P1P!ifJ=0P1PN!YJifJ=0P1PN
48 14 47 ifclda φififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!YJifJ=0P1PN
49 8 13 7 48 fvmptd φSDnHJNY=ififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!YJifJ=0P1PN