Description: Euler's theorem on partitions, also known as a special case of Glaisher's theorem. Let P be the set of all partitions of N , represented as multisets of positive integers, which is to say functions from NN to NN0 where the value of the function represents the number of repetitions of an individual element, and the sum of all the elements with repetition equals N . Then the set O of all partitions that only consist of odd numbers and the set D of all partitions which have no repeated elements have the same cardinality. This is Metamath 100 proof #45. (Contributed by Thierry Arnoux, 14-Aug-2018) (Revised by Thierry Arnoux, 1-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eulerpart.p | |
|
eulerpart.o | |
||
eulerpart.d | |
||
Assertion | eulerpart | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpart.p | |
|
2 | eulerpart.o | |
|
3 | eulerpart.d | |
|
4 | eqid | |
|
5 | oveq2 | |
|
6 | oveq2 | |
|
7 | 6 | oveq1d | |
8 | 5 7 | cbvmpov | |
9 | oveq1 | |
|
10 | 9 | eleq1d | |
11 | 10 | cbvrabv | |
12 | 11 | eqcomi | |
13 | fveq1 | |
|
14 | 13 | eleq2d | |
15 | 14 | anbi2d | |
16 | 15 | opabbidv | |
17 | 16 | cbvmptv | |
18 | oveq1 | |
|
19 | 18 | eleq1d | |
20 | 19 | cbvrabv | |
21 | 20 | eqcomi | |
22 | simpl | |
|
23 | 22 | eleq1d | |
24 | simpr | |
|
25 | 22 | fveq2d | |
26 | 24 25 | eleq12d | |
27 | 23 26 | anbi12d | |
28 | 27 | cbvopabv | |
29 | 21 28 | mpteq12i | |
30 | 17 29 | eqtri | |
31 | cnveq | |
|
32 | 31 | imaeq1d | |
33 | 32 | eleq1d | |
34 | 33 | cbvabv | |
35 | 32 | sseq1d | |
36 | 35 | cbvrabv | |
37 | reseq1 | |
|
38 | 37 | coeq2d | |
39 | 38 | fveq2d | |
40 | 39 | imaeq2d | |
41 | 40 | fveq2d | |
42 | 41 | cbvmptv | |
43 | 8 | eqcomi | |
44 | 43 | imaeq1i | |
45 | eqid | |
|
46 | 11 45 | mpteq12i | |
47 | fveq1 | |
|
48 | 47 | eleq2d | |
49 | 48 | anbi2d | |
50 | 49 | opabbidv | |
51 | 50 | cbvmptv | |
52 | 46 29 51 | 3eqtr2i | |
53 | 52 | fveq1i | |
54 | 53 | imaeq2i | |
55 | 44 54 | eqtri | |
56 | 55 | fveq2i | |
57 | 56 | mpteq2i | |
58 | 42 57 | eqtri | |
59 | eqid | |
|
60 | 1 2 3 4 8 12 30 34 36 58 59 | eulerpartlemn | |
61 | ovex | |
|
62 | 61 | rabex | |
63 | 62 | inex1 | |
64 | 63 | mptex | |
65 | 64 | resex | |
66 | f1oeq1 | |
|
67 | 65 66 | spcev | |
68 | bren | |
|
69 | hasheni | |
|
70 | 68 69 | sylbir | |
71 | 60 67 70 | mp2b | |