Metamath Proof Explorer


Theorem evl1gsummon

Description: Value of a univariate polynomial evaluation mapping an additive group sum of a multiple of an exponentiation of a variable to a group sum of the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019)

Ref Expression
Hypotheses evl1gsummon.q Q=eval1R
evl1gsummon.k K=BaseR
evl1gsummon.w W=Poly1R
evl1gsummon.b B=BaseW
evl1gsummon.x X=var1R
evl1gsummon.h H=mulGrpR
evl1gsummon.e E=H
evl1gsummon.g G=mulGrpW
evl1gsummon.p ×˙=G
evl1gsummon.t1 ×˙=W
evl1gsummon.t2 ·˙=R
evl1gsummon.r φRCRing
evl1gsummon.a φxMAK
evl1gsummon.m φM0
evl1gsummon.f φMFin
evl1gsummon.n φxMN0
evl1gsummon.c φCK
Assertion evl1gsummon φQWxMA×˙N×˙XC=RxMA·˙NEC

Proof

Step Hyp Ref Expression
1 evl1gsummon.q Q=eval1R
2 evl1gsummon.k K=BaseR
3 evl1gsummon.w W=Poly1R
4 evl1gsummon.b B=BaseW
5 evl1gsummon.x X=var1R
6 evl1gsummon.h H=mulGrpR
7 evl1gsummon.e E=H
8 evl1gsummon.g G=mulGrpW
9 evl1gsummon.p ×˙=G
10 evl1gsummon.t1 ×˙=W
11 evl1gsummon.t2 ·˙=R
12 evl1gsummon.r φRCRing
13 evl1gsummon.a φxMAK
14 evl1gsummon.m φM0
15 evl1gsummon.f φMFin
16 evl1gsummon.n φxMN0
17 evl1gsummon.c φCK
18 eqid R𝑠K=R𝑠K
19 crngring RCRingRRing
20 12 19 syl φRRing
21 3 ply1lmod RRingWLMod
22 20 21 syl φWLMod
23 22 adantr φxMWLMod
24 13 r19.21bi φxMAK
25 3 ply1sca RCRingR=ScalarW
26 12 25 syl φR=ScalarW
27 26 fveq2d φBaseR=BaseScalarW
28 2 27 eqtrid φK=BaseScalarW
29 28 adantr φxMK=BaseScalarW
30 24 29 eleqtrd φxMABaseScalarW
31 8 4 mgpbas B=BaseG
32 3 ply1ring RRingWRing
33 20 32 syl φWRing
34 8 ringmgp WRingGMnd
35 33 34 syl φGMnd
36 35 adantr φxMGMnd
37 16 r19.21bi φxMN0
38 20 adantr φxMRRing
39 5 3 4 vr1cl RRingXB
40 38 39 syl φxMXB
41 31 9 36 37 40 mulgnn0cld φxMN×˙XB
42 eqid ScalarW=ScalarW
43 eqid BaseScalarW=BaseScalarW
44 4 42 10 43 lmodvscl WLModABaseScalarWN×˙XBA×˙N×˙XB
45 23 30 41 44 syl3anc φxMA×˙N×˙XB
46 1 2 3 18 4 12 45 14 15 17 evl1gsumaddval φQWxMA×˙N×˙XC=RxMQA×˙N×˙XC
47 12 adantr φxMRCRing
48 17 adantr φxMCK
49 1 3 8 5 2 9 47 37 10 24 48 6 7 11 evl1scvarpwval φxMQA×˙N×˙XC=A·˙NEC
50 49 mpteq2dva φxMQA×˙N×˙XC=xMA·˙NEC
51 50 oveq2d φRxMQA×˙N×˙XC=RxMA·˙NEC
52 46 51 eqtrd φQWxMA×˙N×˙XC=RxMA·˙NEC