Metamath Proof Explorer


Theorem evl1var

Description: Polynomial evaluation maps the variable to the identity function. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evl1var.q O=eval1R
evl1var.v X=var1R
evl1var.b B=BaseR
Assertion evl1var RCRingOX=IB

Proof

Step Hyp Ref Expression
1 evl1var.q O=eval1R
2 evl1var.v X=var1R
3 evl1var.b B=BaseR
4 crngring RCRingRRing
5 eqid Poly1R=Poly1R
6 eqid BasePoly1R=BasePoly1R
7 2 5 6 vr1cl RRingXBasePoly1R
8 4 7 syl RCRingXBasePoly1R
9 eqid 1𝑜evalR=1𝑜evalR
10 eqid 1𝑜mPolyR=1𝑜mPolyR
11 eqid PwSer1R=PwSer1R
12 5 11 6 ply1bas BasePoly1R=Base1𝑜mPolyR
13 1 9 3 10 12 evl1val RCRingXBasePoly1ROX=1𝑜evalRXyB1𝑜×y
14 8 13 mpdan RCRingOX=1𝑜evalRXyB1𝑜×y
15 df1o2 1𝑜=
16 3 fvexi BV
17 0ex V
18 eqid zB1𝑜z=zB1𝑜z
19 15 16 17 18 mapsncnv zB1𝑜z-1=yB1𝑜×y
20 19 coeq2i 1𝑜evalRXzB1𝑜z-1=1𝑜evalRXyB1𝑜×y
21 3 ressid RCRingR𝑠B=R
22 21 oveq2d RCRing1𝑜mVarR𝑠B=1𝑜mVarR
23 22 fveq1d RCRing1𝑜mVarR𝑠B=1𝑜mVarR
24 2 vr1val X=1𝑜mVarR
25 23 24 eqtr4di RCRing1𝑜mVarR𝑠B=X
26 25 fveq2d RCRing1𝑜evalR1𝑜mVarR𝑠B=1𝑜evalRX
27 9 3 evlval 1𝑜evalR=1𝑜evalSubRB
28 eqid 1𝑜mVarR𝑠B=1𝑜mVarR𝑠B
29 eqid R𝑠B=R𝑠B
30 1on 1𝑜On
31 30 a1i RCRing1𝑜On
32 id RCRingRCRing
33 3 subrgid RRingBSubRingR
34 4 33 syl RCRingBSubRingR
35 0lt1o 1𝑜
36 35 a1i RCRing1𝑜
37 27 28 29 3 31 32 34 36 evlsvar RCRing1𝑜evalR1𝑜mVarR𝑠B=zB1𝑜z
38 26 37 eqtr3d RCRing1𝑜evalRX=zB1𝑜z
39 38 coeq1d RCRing1𝑜evalRXzB1𝑜z-1=zB1𝑜zzB1𝑜z-1
40 20 39 eqtr3id RCRing1𝑜evalRXyB1𝑜×y=zB1𝑜zzB1𝑜z-1
41 15 16 17 18 mapsnf1o2 zB1𝑜z:B1𝑜1-1 ontoB
42 f1ococnv2 zB1𝑜z:B1𝑜1-1 ontoBzB1𝑜zzB1𝑜z-1=IB
43 41 42 mp1i RCRingzB1𝑜zzB1𝑜z-1=IB
44 14 40 43 3eqtrd RCRingOX=IB