| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expgrowthi.s |
|
| 2 |
|
expgrowthi.k |
|
| 3 |
|
expgrowthi.y0 |
|
| 4 |
|
expgrowthi.yt |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
fveq2d |
|
| 7 |
6
|
oveq2d |
|
| 8 |
7
|
cbvmptv |
|
| 9 |
4 8
|
eqtri |
|
| 10 |
9
|
oveq2i |
|
| 11 |
|
elpri |
|
| 12 |
|
eleq2 |
|
| 13 |
|
recn |
|
| 14 |
12 13
|
biimtrdi |
|
| 15 |
|
eleq2 |
|
| 16 |
15
|
biimpd |
|
| 17 |
14 16
|
jaoi |
|
| 18 |
1 11 17
|
3syl |
|
| 19 |
18
|
imp |
|
| 20 |
|
mulcl |
|
| 21 |
2 20
|
sylan |
|
| 22 |
|
efcl |
|
| 23 |
21 22
|
syl |
|
| 24 |
19 23
|
syldan |
|
| 25 |
|
ovexd |
|
| 26 |
|
cnelprrecn |
|
| 27 |
26
|
a1i |
|
| 28 |
19 21
|
syldan |
|
| 29 |
2
|
adantr |
|
| 30 |
|
efcl |
|
| 31 |
30
|
adantl |
|
| 32 |
|
1cnd |
|
| 33 |
1
|
dvmptid |
|
| 34 |
1 19 32 33 2
|
dvmptcmul |
|
| 35 |
2
|
mulridd |
|
| 36 |
35
|
mpteq2dv |
|
| 37 |
34 36
|
eqtrd |
|
| 38 |
|
dvef |
|
| 39 |
|
eff |
|
| 40 |
|
ffn |
|
| 41 |
39 40
|
ax-mp |
|
| 42 |
|
dffn5 |
|
| 43 |
41 42
|
mpbi |
|
| 44 |
43
|
oveq2i |
|
| 45 |
38 44 43
|
3eqtr3i |
|
| 46 |
45
|
a1i |
|
| 47 |
|
fveq2 |
|
| 48 |
1 27 28 29 31 31 37 46 47 47
|
dvmptco |
|
| 49 |
|
mulcom |
|
| 50 |
24 2 49
|
syl2anr |
|
| 51 |
50
|
anabss5 |
|
| 52 |
51
|
mpteq2dva |
|
| 53 |
48 52
|
eqtrd |
|
| 54 |
1 24 25 53 3
|
dvmptcmul |
|
| 55 |
3 2 24
|
3anim123i |
|
| 56 |
55
|
3anidm12 |
|
| 57 |
56
|
anabss5 |
|
| 58 |
|
mul12 |
|
| 59 |
57 58
|
syl |
|
| 60 |
59
|
mpteq2dva |
|
| 61 |
54 60
|
eqtrd |
|
| 62 |
10 61
|
eqtrid |
|
| 63 |
|
ovexd |
|
| 64 |
|
fconstmpt |
|
| 65 |
64
|
a1i |
|
| 66 |
9
|
a1i |
|
| 67 |
1 29 63 65 66
|
offval2 |
|
| 68 |
62 67
|
eqtr4d |
|