Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for ML
Miscellaneous
exrecfnlem
Next ⟩
exrecfn
Metamath Proof Explorer
Ascii
Unicode
Theorem
exrecfnlem
Description:
Lemma for
exrecfn
.
(Contributed by
ML
, 30-Mar-2022)
Ref
Expression
Hypothesis
exrecfnlem.1
⊢
F
=
z
∈
V
⟼
z
∪
ran
y
∈
z
⟼
B
Assertion
exrecfnlem
⊢
A
∈
V
∧
∀
y
B
∈
W
→
∃
x
A
⊆
x
∧
∀
y
∈
x
B
∈
x
Proof
Step
Hyp
Ref
Expression
1
exrecfnlem.1
⊢
F
=
z
∈
V
⟼
z
∪
ran
y
∈
z
⟼
B
2
rdg0g
⊢
A
∈
V
→
rec
F
A
∅
=
A
3
peano1
ω
⊢
∅
∈
ω
4
omelon
ω
⊢
ω
∈
On
5
limom
ω
⊢
Lim
ω
6
rdglimss
ω
ω
ω
ω
⊢
ω
∈
On
∧
Lim
ω
∧
∅
∈
ω
→
rec
F
A
∅
⊆
rec
F
A
ω
7
4
5
6
mpanl12
ω
ω
⊢
∅
∈
ω
→
rec
F
A
∅
⊆
rec
F
A
ω
8
3
7
ax-mp
ω
⊢
rec
F
A
∅
⊆
rec
F
A
ω
9
2
8
eqsstrrdi
ω
⊢
A
∈
V
→
A
⊆
rec
F
A
ω
10
rdglim2a
ω
ω
ω
ω
⊢
ω
∈
On
∧
Lim
ω
→
rec
F
A
ω
=
⋃
u
∈
ω
rec
F
A
u
11
4
5
10
mp2an
ω
ω
⊢
rec
F
A
ω
=
⋃
u
∈
ω
rec
F
A
u
12
11
eleq2i
ω
ω
⊢
y
∈
rec
F
A
ω
↔
y
∈
⋃
u
∈
ω
rec
F
A
u
13
eliun
ω
ω
⊢
y
∈
⋃
u
∈
ω
rec
F
A
u
↔
∃
u
∈
ω
y
∈
rec
F
A
u
14
12
13
bitri
ω
ω
⊢
y
∈
rec
F
A
ω
↔
∃
u
∈
ω
y
∈
rec
F
A
u
15
peano2
ω
ω
⊢
u
∈
ω
→
suc
u
∈
ω
16
nnon
ω
⊢
u
∈
ω
→
u
∈
On
17
eqid
⊢
y
∈
rec
F
A
u
⟼
B
=
y
∈
rec
F
A
u
⟼
B
18
17
elrnmpt1
⊢
y
∈
rec
F
A
u
∧
B
∈
W
→
B
∈
ran
y
∈
rec
F
A
u
⟼
B
19
elun2
⊢
B
∈
ran
y
∈
rec
F
A
u
⟼
B
→
B
∈
rec
F
A
u
∪
ran
y
∈
rec
F
A
u
⟼
B
20
18
19
syl
⊢
y
∈
rec
F
A
u
∧
B
∈
W
→
B
∈
rec
F
A
u
∪
ran
y
∈
rec
F
A
u
⟼
B
21
fvex
⊢
rec
F
A
u
∈
V
22
nfcv
⊢
Ⅎ
_
y
V
23
nfcv
⊢
Ⅎ
_
y
z
24
nfmpt1
⊢
Ⅎ
_
y
y
∈
z
⟼
B
25
24
nfrn
⊢
Ⅎ
_
y
ran
y
∈
z
⟼
B
26
23
25
nfun
⊢
Ⅎ
_
y
z
∪
ran
y
∈
z
⟼
B
27
22
26
nfmpt
⊢
Ⅎ
_
y
z
∈
V
⟼
z
∪
ran
y
∈
z
⟼
B
28
1
27
nfcxfr
⊢
Ⅎ
_
y
F
29
nfcv
⊢
Ⅎ
_
y
A
30
28
29
nfrdg
⊢
Ⅎ
_
y
rec
F
A
31
nfcv
⊢
Ⅎ
_
y
u
32
30
31
nffv
⊢
Ⅎ
_
y
rec
F
A
u
33
32
mptexgf
⊢
rec
F
A
u
∈
V
→
y
∈
rec
F
A
u
⟼
B
∈
V
34
21
33
ax-mp
⊢
y
∈
rec
F
A
u
⟼
B
∈
V
35
34
rnex
⊢
ran
y
∈
rec
F
A
u
⟼
B
∈
V
36
21
35
unex
⊢
rec
F
A
u
∪
ran
y
∈
rec
F
A
u
⟼
B
∈
V
37
nfcv
⊢
Ⅎ
_
z
A
38
nfcv
⊢
Ⅎ
_
z
u
39
nfmpt1
⊢
Ⅎ
_
z
z
∈
V
⟼
z
∪
ran
y
∈
z
⟼
B
40
1
39
nfcxfr
⊢
Ⅎ
_
z
F
41
40
37
nfrdg
⊢
Ⅎ
_
z
rec
F
A
42
41
38
nffv
⊢
Ⅎ
_
z
rec
F
A
u
43
nfcv
⊢
Ⅎ
_
z
B
44
42
43
nfmpt
⊢
Ⅎ
_
z
y
∈
rec
F
A
u
⟼
B
45
44
nfrn
⊢
Ⅎ
_
z
ran
y
∈
rec
F
A
u
⟼
B
46
42
45
nfun
⊢
Ⅎ
_
z
rec
F
A
u
∪
ran
y
∈
rec
F
A
u
⟼
B
47
rdgeq1
⊢
F
=
z
∈
V
⟼
z
∪
ran
y
∈
z
⟼
B
→
rec
F
A
=
rec
z
∈
V
⟼
z
∪
ran
y
∈
z
⟼
B
A
48
1
47
ax-mp
⊢
rec
F
A
=
rec
z
∈
V
⟼
z
∪
ran
y
∈
z
⟼
B
A
49
id
⊢
z
=
rec
F
A
u
→
z
=
rec
F
A
u
50
32
nfeq2
⊢
Ⅎ
y
z
=
rec
F
A
u
51
eqidd
⊢
z
=
rec
F
A
u
→
B
=
B
52
50
49
51
mpteq12df
⊢
z
=
rec
F
A
u
→
y
∈
z
⟼
B
=
y
∈
rec
F
A
u
⟼
B
53
52
rneqd
⊢
z
=
rec
F
A
u
→
ran
y
∈
z
⟼
B
=
ran
y
∈
rec
F
A
u
⟼
B
54
49
53
uneq12d
⊢
z
=
rec
F
A
u
→
z
∪
ran
y
∈
z
⟼
B
=
rec
F
A
u
∪
ran
y
∈
rec
F
A
u
⟼
B
55
37
38
46
48
54
rdgsucmptf
⊢
u
∈
On
∧
rec
F
A
u
∪
ran
y
∈
rec
F
A
u
⟼
B
∈
V
→
rec
F
A
suc
u
=
rec
F
A
u
∪
ran
y
∈
rec
F
A
u
⟼
B
56
36
55
mpan2
⊢
u
∈
On
→
rec
F
A
suc
u
=
rec
F
A
u
∪
ran
y
∈
rec
F
A
u
⟼
B
57
56
eleq2d
⊢
u
∈
On
→
B
∈
rec
F
A
suc
u
↔
B
∈
rec
F
A
u
∪
ran
y
∈
rec
F
A
u
⟼
B
58
20
57
imbitrrid
⊢
u
∈
On
→
y
∈
rec
F
A
u
∧
B
∈
W
→
B
∈
rec
F
A
suc
u
59
16
58
syl
ω
⊢
u
∈
ω
→
y
∈
rec
F
A
u
∧
B
∈
W
→
B
∈
rec
F
A
suc
u
60
rdgellim
ω
ω
ω
ω
⊢
ω
∈
On
∧
Lim
ω
∧
suc
u
∈
ω
→
B
∈
rec
F
A
suc
u
→
B
∈
rec
F
A
ω
61
4
5
60
mpanl12
ω
ω
⊢
suc
u
∈
ω
→
B
∈
rec
F
A
suc
u
→
B
∈
rec
F
A
ω
62
15
59
61
sylsyld
ω
ω
⊢
u
∈
ω
→
y
∈
rec
F
A
u
∧
B
∈
W
→
B
∈
rec
F
A
ω
63
62
expd
ω
ω
⊢
u
∈
ω
→
y
∈
rec
F
A
u
→
B
∈
W
→
B
∈
rec
F
A
ω
64
63
com3r
ω
ω
⊢
B
∈
W
→
u
∈
ω
→
y
∈
rec
F
A
u
→
B
∈
rec
F
A
ω
65
64
rexlimdv
ω
ω
⊢
B
∈
W
→
∃
u
∈
ω
y
∈
rec
F
A
u
→
B
∈
rec
F
A
ω
66
14
65
biimtrid
ω
ω
⊢
B
∈
W
→
y
∈
rec
F
A
ω
→
B
∈
rec
F
A
ω
67
66
alimi
ω
ω
⊢
∀
y
B
∈
W
→
∀
y
y
∈
rec
F
A
ω
→
B
∈
rec
F
A
ω
68
df-ral
ω
ω
ω
ω
⊢
∀
y
∈
rec
F
A
ω
B
∈
rec
F
A
ω
↔
∀
y
y
∈
rec
F
A
ω
→
B
∈
rec
F
A
ω
69
67
68
sylibr
ω
ω
⊢
∀
y
B
∈
W
→
∀
y
∈
rec
F
A
ω
B
∈
rec
F
A
ω
70
fvex
ω
⊢
rec
F
A
ω
∈
V
71
sseq2
ω
ω
⊢
x
=
rec
F
A
ω
→
A
⊆
x
↔
A
⊆
rec
F
A
ω
72
nfcv
ω
⊢
Ⅎ
_
y
ω
73
30
72
nffv
ω
⊢
Ⅎ
_
y
rec
F
A
ω
74
73
nfeq2
ω
⊢
Ⅎ
y
x
=
rec
F
A
ω
75
eleq2
ω
ω
⊢
x
=
rec
F
A
ω
→
y
∈
x
↔
y
∈
rec
F
A
ω
76
eleq2
ω
ω
⊢
x
=
rec
F
A
ω
→
B
∈
x
↔
B
∈
rec
F
A
ω
77
75
76
imbi12d
ω
ω
ω
⊢
x
=
rec
F
A
ω
→
y
∈
x
→
B
∈
x
↔
y
∈
rec
F
A
ω
→
B
∈
rec
F
A
ω
78
74
77
albid
ω
ω
ω
⊢
x
=
rec
F
A
ω
→
∀
y
y
∈
x
→
B
∈
x
↔
∀
y
y
∈
rec
F
A
ω
→
B
∈
rec
F
A
ω
79
df-ral
⊢
∀
y
∈
x
B
∈
x
↔
∀
y
y
∈
x
→
B
∈
x
80
78
79
68
3bitr4g
ω
ω
ω
⊢
x
=
rec
F
A
ω
→
∀
y
∈
x
B
∈
x
↔
∀
y
∈
rec
F
A
ω
B
∈
rec
F
A
ω
81
71
80
anbi12d
ω
ω
ω
ω
⊢
x
=
rec
F
A
ω
→
A
⊆
x
∧
∀
y
∈
x
B
∈
x
↔
A
⊆
rec
F
A
ω
∧
∀
y
∈
rec
F
A
ω
B
∈
rec
F
A
ω
82
70
81
spcev
ω
ω
ω
⊢
A
⊆
rec
F
A
ω
∧
∀
y
∈
rec
F
A
ω
B
∈
rec
F
A
ω
→
∃
x
A
⊆
x
∧
∀
y
∈
x
B
∈
x
83
9
69
82
syl2an
⊢
A
∈
V
∧
∀
y
B
∈
W
→
∃
x
A
⊆
x
∧
∀
y
∈
x
B
∈
x