Description: The multiplicativity formula for degrees of field extensions. Given E a field extension of F , itself a field extension of K , the degree of the extension E /FldExt K is the product of the degrees of the extensions E /FldExt F and F /FldExt K . Proposition 1.2 of Lang, p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | extdgmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | simpl | |
|
7 | fldextfld1 | |
|
8 | 6 7 | syl | |
9 | isfld | |
|
10 | 9 | simplbi | |
11 | 8 10 | syl | |
12 | fldextfld1 | |
|
13 | 12 | adantl | |
14 | brfldext | |
|
15 | 8 13 14 | syl2anc | |
16 | 6 15 | mpbid | |
17 | 16 | simpld | |
18 | isfld | |
|
19 | 18 | simplbi | |
20 | 13 19 | syl | |
21 | 17 20 | eqeltrrd | |
22 | fldexttr | |
|
23 | fldextfld2 | |
|
24 | 23 | adantl | |
25 | brfldext | |
|
26 | 8 24 25 | syl2anc | |
27 | 22 26 | mpbid | |
28 | 27 | simpld | |
29 | isfld | |
|
30 | 29 | simplbi | |
31 | 24 30 | syl | |
32 | 28 31 | eqeltrrd | |
33 | 16 | simprd | |
34 | eqid | |
|
35 | 34 | fldextsubrg | |
36 | 35 | adantl | |
37 | 17 | fveq2d | |
38 | 36 37 | eleqtrd | |
39 | 1 2 3 4 5 11 21 32 33 38 | fedgmul | |
40 | extdgval | |
|
41 | 22 40 | syl | |
42 | extdgval | |
|
43 | 6 42 | syl | |
44 | extdgval | |
|
45 | 44 | adantl | |
46 | 17 | fveq2d | |
47 | 46 | fveq1d | |
48 | 47 | fveq2d | |
49 | 45 48 | eqtrd | |
50 | 43 49 | oveq12d | |
51 | 39 41 50 | 3eqtr4d | |