Metamath Proof Explorer


Theorem extdgmul

Description: The multiplicativity formula for degrees of field extensions. Given E a field extension of F , itself a field extension of K , the degree of the extension E /FldExt K is the product of the degrees of the extensions E /FldExt F and F /FldExt K . Proposition 1.2 of Lang, p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion extdgmul E /FldExt F F /FldExt K E .:. K = E : F 𝑒 F : K

Proof

Step Hyp Ref Expression
1 eqid subringAlg E Base K = subringAlg E Base K
2 eqid subringAlg E Base F = subringAlg E Base F
3 eqid subringAlg E 𝑠 Base F Base K = subringAlg E 𝑠 Base F Base K
4 eqid E 𝑠 Base F = E 𝑠 Base F
5 eqid E 𝑠 Base K = E 𝑠 Base K
6 simpl E /FldExt F F /FldExt K E /FldExt F
7 fldextfld1 E /FldExt F E Field
8 6 7 syl E /FldExt F F /FldExt K E Field
9 isfld E Field E DivRing E CRing
10 9 simplbi E Field E DivRing
11 8 10 syl E /FldExt F F /FldExt K E DivRing
12 fldextfld1 F /FldExt K F Field
13 12 adantl E /FldExt F F /FldExt K F Field
14 brfldext E Field F Field E /FldExt F F = E 𝑠 Base F Base F SubRing E
15 8 13 14 syl2anc E /FldExt F F /FldExt K E /FldExt F F = E 𝑠 Base F Base F SubRing E
16 6 15 mpbid E /FldExt F F /FldExt K F = E 𝑠 Base F Base F SubRing E
17 16 simpld E /FldExt F F /FldExt K F = E 𝑠 Base F
18 isfld F Field F DivRing F CRing
19 18 simplbi F Field F DivRing
20 13 19 syl E /FldExt F F /FldExt K F DivRing
21 17 20 eqeltrrd E /FldExt F F /FldExt K E 𝑠 Base F DivRing
22 fldexttr E /FldExt F F /FldExt K E /FldExt K
23 fldextfld2 F /FldExt K K Field
24 23 adantl E /FldExt F F /FldExt K K Field
25 brfldext E Field K Field E /FldExt K K = E 𝑠 Base K Base K SubRing E
26 8 24 25 syl2anc E /FldExt F F /FldExt K E /FldExt K K = E 𝑠 Base K Base K SubRing E
27 22 26 mpbid E /FldExt F F /FldExt K K = E 𝑠 Base K Base K SubRing E
28 27 simpld E /FldExt F F /FldExt K K = E 𝑠 Base K
29 isfld K Field K DivRing K CRing
30 29 simplbi K Field K DivRing
31 24 30 syl E /FldExt F F /FldExt K K DivRing
32 28 31 eqeltrrd E /FldExt F F /FldExt K E 𝑠 Base K DivRing
33 16 simprd E /FldExt F F /FldExt K Base F SubRing E
34 eqid Base K = Base K
35 34 fldextsubrg F /FldExt K Base K SubRing F
36 35 adantl E /FldExt F F /FldExt K Base K SubRing F
37 17 fveq2d E /FldExt F F /FldExt K SubRing F = SubRing E 𝑠 Base F
38 36 37 eleqtrd E /FldExt F F /FldExt K Base K SubRing E 𝑠 Base F
39 1 2 3 4 5 11 21 32 33 38 fedgmul E /FldExt F F /FldExt K dim subringAlg E Base K = dim subringAlg E Base F 𝑒 dim subringAlg E 𝑠 Base F Base K
40 extdgval E /FldExt K E .:. K = dim subringAlg E Base K
41 22 40 syl E /FldExt F F /FldExt K E .:. K = dim subringAlg E Base K
42 extdgval E /FldExt F E .:. F = dim subringAlg E Base F
43 6 42 syl E /FldExt F F /FldExt K E .:. F = dim subringAlg E Base F
44 extdgval F /FldExt K F .:. K = dim subringAlg F Base K
45 44 adantl E /FldExt F F /FldExt K F .:. K = dim subringAlg F Base K
46 17 fveq2d E /FldExt F F /FldExt K subringAlg F = subringAlg E 𝑠 Base F
47 46 fveq1d E /FldExt F F /FldExt K subringAlg F Base K = subringAlg E 𝑠 Base F Base K
48 47 fveq2d E /FldExt F F /FldExt K dim subringAlg F Base K = dim subringAlg E 𝑠 Base F Base K
49 45 48 eqtrd E /FldExt F F /FldExt K F .:. K = dim subringAlg E 𝑠 Base F Base K
50 43 49 oveq12d E /FldExt F F /FldExt K E : F 𝑒 F : K = dim subringAlg E Base F 𝑒 dim subringAlg E 𝑠 Base F Base K
51 39 41 50 3eqtr4d E /FldExt F F /FldExt K E .:. K = E : F 𝑒 F : K