Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
simpl |
|
7 |
|
fldextfld1 |
|
8 |
6 7
|
syl |
|
9 |
|
isfld |
|
10 |
9
|
simplbi |
|
11 |
8 10
|
syl |
|
12 |
|
fldextfld1 |
|
13 |
12
|
adantl |
|
14 |
|
brfldext |
|
15 |
8 13 14
|
syl2anc |
|
16 |
6 15
|
mpbid |
|
17 |
16
|
simpld |
|
18 |
|
isfld |
|
19 |
18
|
simplbi |
|
20 |
13 19
|
syl |
|
21 |
17 20
|
eqeltrrd |
|
22 |
|
fldexttr |
|
23 |
|
fldextfld2 |
|
24 |
23
|
adantl |
|
25 |
|
brfldext |
|
26 |
8 24 25
|
syl2anc |
|
27 |
22 26
|
mpbid |
|
28 |
27
|
simpld |
|
29 |
|
isfld |
|
30 |
29
|
simplbi |
|
31 |
24 30
|
syl |
|
32 |
28 31
|
eqeltrrd |
|
33 |
16
|
simprd |
|
34 |
|
eqid |
|
35 |
34
|
fldextsubrg |
|
36 |
35
|
adantl |
|
37 |
17
|
fveq2d |
|
38 |
36 37
|
eleqtrd |
|
39 |
1 2 3 4 5 11 21 32 33 38
|
fedgmul |
|
40 |
|
extdgval |
|
41 |
22 40
|
syl |
|
42 |
|
extdgval |
|
43 |
6 42
|
syl |
|
44 |
|
extdgval |
|
45 |
44
|
adantl |
|
46 |
17
|
fveq2d |
|
47 |
46
|
fveq1d |
|
48 |
47
|
fveq2d |
|
49 |
45 48
|
eqtrd |
|
50 |
43 49
|
oveq12d |
|
51 |
39 41 50
|
3eqtr4d |
|