Metamath Proof Explorer


Theorem extdgmul

Description: The multiplicativity formula for degrees of field extensions. Given E a field extension of F , itself a field extension of K , the degree of the extension E /FldExt K is the product of the degrees of the extensions E /FldExt F and F /FldExt K . Proposition 1.2 of Lang, p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion extdgmul Math input error

Proof

Step Hyp Ref Expression
1 eqid subringAlgEBaseK=subringAlgEBaseK
2 eqid subringAlgEBaseF=subringAlgEBaseF
3 eqid subringAlgE𝑠BaseFBaseK=subringAlgE𝑠BaseFBaseK
4 eqid E𝑠BaseF=E𝑠BaseF
5 eqid E𝑠BaseK=E𝑠BaseK
6 simpl E/FldExtFF/FldExtKE/FldExtF
7 fldextfld1 E/FldExtFEField
8 6 7 syl E/FldExtFF/FldExtKEField
9 isfld EFieldEDivRingECRing
10 9 simplbi EFieldEDivRing
11 8 10 syl E/FldExtFF/FldExtKEDivRing
12 fldextfld1 F/FldExtKFField
13 12 adantl E/FldExtFF/FldExtKFField
14 brfldext EFieldFFieldE/FldExtFF=E𝑠BaseFBaseFSubRingE
15 8 13 14 syl2anc E/FldExtFF/FldExtKE/FldExtFF=E𝑠BaseFBaseFSubRingE
16 6 15 mpbid E/FldExtFF/FldExtKF=E𝑠BaseFBaseFSubRingE
17 16 simpld E/FldExtFF/FldExtKF=E𝑠BaseF
18 isfld FFieldFDivRingFCRing
19 18 simplbi FFieldFDivRing
20 13 19 syl E/FldExtFF/FldExtKFDivRing
21 17 20 eqeltrrd E/FldExtFF/FldExtKE𝑠BaseFDivRing
22 fldexttr E/FldExtFF/FldExtKE/FldExtK
23 fldextfld2 F/FldExtKKField
24 23 adantl E/FldExtFF/FldExtKKField
25 brfldext EFieldKFieldE/FldExtKK=E𝑠BaseKBaseKSubRingE
26 8 24 25 syl2anc E/FldExtFF/FldExtKE/FldExtKK=E𝑠BaseKBaseKSubRingE
27 22 26 mpbid E/FldExtFF/FldExtKK=E𝑠BaseKBaseKSubRingE
28 27 simpld E/FldExtFF/FldExtKK=E𝑠BaseK
29 isfld KFieldKDivRingKCRing
30 29 simplbi KFieldKDivRing
31 24 30 syl E/FldExtFF/FldExtKKDivRing
32 28 31 eqeltrrd E/FldExtFF/FldExtKE𝑠BaseKDivRing
33 16 simprd E/FldExtFF/FldExtKBaseFSubRingE
34 eqid BaseK=BaseK
35 34 fldextsubrg F/FldExtKBaseKSubRingF
36 35 adantl E/FldExtFF/FldExtKBaseKSubRingF
37 17 fveq2d E/FldExtFF/FldExtKSubRingF=SubRingE𝑠BaseF
38 36 37 eleqtrd E/FldExtFF/FldExtKBaseKSubRingE𝑠BaseF
39 1 2 3 4 5 11 21 32 33 38 fedgmul E/FldExtFF/FldExtKdimsubringAlgEBaseK=dimsubringAlgEBaseF𝑒dimsubringAlgE𝑠BaseFBaseK
40 extdgval E/FldExtKE.:.K=dimsubringAlgEBaseK
41 22 40 syl E/FldExtFF/FldExtKE.:.K=dimsubringAlgEBaseK
42 extdgval E/FldExtFE.:.F=dimsubringAlgEBaseF
43 6 42 syl E/FldExtFF/FldExtKE.:.F=dimsubringAlgEBaseF
44 extdgval F/FldExtKF.:.K=dimsubringAlgFBaseK
45 44 adantl E/FldExtFF/FldExtKF.:.K=dimsubringAlgFBaseK
46 17 fveq2d E/FldExtFF/FldExtKsubringAlgF=subringAlgE𝑠BaseF
47 46 fveq1d E/FldExtFF/FldExtKsubringAlgFBaseK=subringAlgE𝑠BaseFBaseK
48 47 fveq2d E/FldExtFF/FldExtKdimsubringAlgFBaseK=dimsubringAlgE𝑠BaseFBaseK
49 45 48 eqtrd E/FldExtFF/FldExtKF.:.K=dimsubringAlgE𝑠BaseFBaseK
50 43 49 oveq12d Math input error
51 39 41 50 3eqtr4d Math input error