Description: The set ( X C N ) of double loops of length N on vertex X can be constructed from the set F of closed walks on X with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). 3 <_ N is required since for N = 2 : F = ( X ( ClWWalksNOnG ) 0 ) = (/) (see clwwlk0on0 stating that a closed walk of length 0 is not represented as word), which would result in an empty set on the right hand side, but ( X C N ) needs not be empty, see 2clwwlk2 . (Contributed by Alexander van der Vekens, 18-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 31-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | extwwlkfab.v | |
|
extwwlkfab.c | |
||
extwwlkfab.f | |
||
Assertion | extwwlkfab | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extwwlkfab.v | |
|
2 | extwwlkfab.c | |
|
3 | extwwlkfab.f | |
|
4 | uzuzle23 | |
|
5 | 2 | 2clwwlk | |
6 | 4 5 | sylan2 | |
7 | 6 | 3adant1 | |
8 | clwwlknon | |
|
9 | 8 | rabeqi | |
10 | rabrab | |
|
11 | simpll3 | |
|
12 | simplr | |
|
13 | simpr | |
|
14 | simpl | |
|
15 | 14 | eqcomd | |
16 | 13 15 | eqtrd | |
17 | 16 | adantl | |
18 | clwwnrepclwwn | |
|
19 | 11 12 17 18 | syl3anc | |
20 | 14 | adantl | |
21 | 19 20 | jca | |
22 | simp1 | |
|
23 | 22 | anim1i | |
24 | 23 | adantr | |
25 | clwwlknlbonbgr1 | |
|
26 | 24 25 | syl | |
27 | oveq2 | |
|
28 | 27 | eqcoms | |
29 | 28 | adantr | |
30 | 29 | adantl | |
31 | 26 30 | eleqtrrd | |
32 | 13 | adantl | |
33 | 21 31 32 | 3jca | |
34 | 33 | ex | |
35 | simpr | |
|
36 | 35 | anim1i | |
37 | 36 | 3adant2 | |
38 | 34 37 | impbid1 | |
39 | 2clwwlklem | |
|
40 | 39 | 3ad2antr3 | |
41 | 40 | ancoms | |
42 | 41 | eqcomd | |
43 | 42 | eqeq1d | |
44 | 43 | anbi2d | |
45 | 44 | 3anbi1d | |
46 | 3 | eleq2i | |
47 | isclwwlknon | |
|
48 | 47 | a1i | |
49 | 46 48 | bitrid | |
50 | 49 | 3anbi1d | |
51 | 50 | bicomd | |
52 | 51 | adantr | |
53 | 38 45 52 | 3bitrd | |
54 | 53 | rabbidva | |
55 | 10 54 | eqtrid | |
56 | 9 55 | eqtrid | |
57 | 7 56 | eqtrd | |