Metamath Proof Explorer


Theorem extwwlkfab

Description: The set ( X C N ) of double loops of length N on vertex X can be constructed from the set F of closed walks on X with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). 3 <_ N is required since for N = 2 : F = ( X ( ClWWalksNOnG ) 0 ) = (/) (see clwwlk0on0 stating that a closed walk of length 0 is not represented as word), which would result in an empty set on the right hand side, but ( X C N ) needs not be empty, see 2clwwlk2 . (Contributed by Alexander van der Vekens, 18-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 31-Oct-2022)

Ref Expression
Hypotheses extwwlkfab.v V = Vtx G
extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
extwwlkfab.f F = X ClWWalksNOn G N 2
Assertion extwwlkfab G USGraph X V N 3 X C N = w N ClWWalksN G | w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V = Vtx G
2 extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
3 extwwlkfab.f F = X ClWWalksNOn G N 2
4 uzuzle23 N 3 N 2
5 2 2clwwlk X V N 2 X C N = w X ClWWalksNOn G N | w N 2 = X
6 4 5 sylan2 X V N 3 X C N = w X ClWWalksNOn G N | w N 2 = X
7 6 3adant1 G USGraph X V N 3 X C N = w X ClWWalksNOn G N | w N 2 = X
8 clwwlknon X ClWWalksNOn G N = w N ClWWalksN G | w 0 = X
9 8 rabeqi w X ClWWalksNOn G N | w N 2 = X = w w N ClWWalksN G | w 0 = X | w N 2 = X
10 rabrab w w N ClWWalksN G | w 0 = X | w N 2 = X = w N ClWWalksN G | w 0 = X w N 2 = X
11 simpll3 G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X N 3
12 simplr G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w N ClWWalksN G
13 simpr w 0 = X w N 2 = X w N 2 = X
14 simpl w 0 = X w N 2 = X w 0 = X
15 14 eqcomd w 0 = X w N 2 = X X = w 0
16 13 15 eqtrd w 0 = X w N 2 = X w N 2 = w 0
17 16 adantl G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w N 2 = w 0
18 clwwnrepclwwn N 3 w N ClWWalksN G w N 2 = w 0 w prefix N 2 N 2 ClWWalksN G
19 11 12 17 18 syl3anc G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w prefix N 2 N 2 ClWWalksN G
20 14 adantl G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w 0 = X
21 19 20 jca G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w prefix N 2 N 2 ClWWalksN G w 0 = X
22 simp1 G USGraph X V N 3 G USGraph
23 22 anim1i G USGraph X V N 3 w N ClWWalksN G G USGraph w N ClWWalksN G
24 23 adantr G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X G USGraph w N ClWWalksN G
25 clwwlknlbonbgr1 G USGraph w N ClWWalksN G w N 1 G NeighbVtx w 0
26 24 25 syl G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w N 1 G NeighbVtx w 0
27 oveq2 X = w 0 G NeighbVtx X = G NeighbVtx w 0
28 27 eqcoms w 0 = X G NeighbVtx X = G NeighbVtx w 0
29 28 adantr w 0 = X w N 2 = X G NeighbVtx X = G NeighbVtx w 0
30 29 adantl G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X G NeighbVtx X = G NeighbVtx w 0
31 26 30 eleqtrrd G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w N 1 G NeighbVtx X
32 13 adantl G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w N 2 = X
33 21 31 32 3jca G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w prefix N 2 N 2 ClWWalksN G w 0 = X w N 1 G NeighbVtx X w N 2 = X
34 33 ex G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w prefix N 2 N 2 ClWWalksN G w 0 = X w N 1 G NeighbVtx X w N 2 = X
35 simpr w prefix N 2 N 2 ClWWalksN G w 0 = X w 0 = X
36 35 anim1i w prefix N 2 N 2 ClWWalksN G w 0 = X w N 2 = X w 0 = X w N 2 = X
37 36 3adant2 w prefix N 2 N 2 ClWWalksN G w 0 = X w N 1 G NeighbVtx X w N 2 = X w 0 = X w N 2 = X
38 34 37 impbid1 G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w prefix N 2 N 2 ClWWalksN G w 0 = X w N 1 G NeighbVtx X w N 2 = X
39 2clwwlklem w N ClWWalksN G N 3 w prefix N 2 0 = w 0
40 39 3ad2antr3 w N ClWWalksN G G USGraph X V N 3 w prefix N 2 0 = w 0
41 40 ancoms G USGraph X V N 3 w N ClWWalksN G w prefix N 2 0 = w 0
42 41 eqcomd G USGraph X V N 3 w N ClWWalksN G w 0 = w prefix N 2 0
43 42 eqeq1d G USGraph X V N 3 w N ClWWalksN G w 0 = X w prefix N 2 0 = X
44 43 anbi2d G USGraph X V N 3 w N ClWWalksN G w prefix N 2 N 2 ClWWalksN G w 0 = X w prefix N 2 N 2 ClWWalksN G w prefix N 2 0 = X
45 44 3anbi1d G USGraph X V N 3 w N ClWWalksN G w prefix N 2 N 2 ClWWalksN G w 0 = X w N 1 G NeighbVtx X w N 2 = X w prefix N 2 N 2 ClWWalksN G w prefix N 2 0 = X w N 1 G NeighbVtx X w N 2 = X
46 3 eleq2i w prefix N 2 F w prefix N 2 X ClWWalksNOn G N 2
47 isclwwlknon w prefix N 2 X ClWWalksNOn G N 2 w prefix N 2 N 2 ClWWalksN G w prefix N 2 0 = X
48 47 a1i G USGraph X V N 3 w prefix N 2 X ClWWalksNOn G N 2 w prefix N 2 N 2 ClWWalksN G w prefix N 2 0 = X
49 46 48 syl5bb G USGraph X V N 3 w prefix N 2 F w prefix N 2 N 2 ClWWalksN G w prefix N 2 0 = X
50 49 3anbi1d G USGraph X V N 3 w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X w prefix N 2 N 2 ClWWalksN G w prefix N 2 0 = X w N 1 G NeighbVtx X w N 2 = X
51 50 bicomd G USGraph X V N 3 w prefix N 2 N 2 ClWWalksN G w prefix N 2 0 = X w N 1 G NeighbVtx X w N 2 = X w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X
52 51 adantr G USGraph X V N 3 w N ClWWalksN G w prefix N 2 N 2 ClWWalksN G w prefix N 2 0 = X w N 1 G NeighbVtx X w N 2 = X w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X
53 38 45 52 3bitrd G USGraph X V N 3 w N ClWWalksN G w 0 = X w N 2 = X w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X
54 53 rabbidva G USGraph X V N 3 w N ClWWalksN G | w 0 = X w N 2 = X = w N ClWWalksN G | w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X
55 10 54 eqtrid G USGraph X V N 3 w w N ClWWalksN G | w 0 = X | w N 2 = X = w N ClWWalksN G | w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X
56 9 55 eqtrid G USGraph X V N 3 w X ClWWalksNOn G N | w N 2 = X = w N ClWWalksN G | w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X
57 7 56 eqtrd G USGraph X V N 3 X C N = w N ClWWalksN G | w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X