Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
|
2 |
|
extwwlkfab.c |
|
3 |
|
extwwlkfab.f |
|
4 |
|
uzuzle23 |
|
5 |
2
|
2clwwlk |
|
6 |
4 5
|
sylan2 |
|
7 |
6
|
3adant1 |
|
8 |
|
clwwlknon |
|
9 |
8
|
rabeqi |
|
10 |
|
rabrab |
|
11 |
|
simpll3 |
|
12 |
|
simplr |
|
13 |
|
simpr |
|
14 |
|
simpl |
|
15 |
14
|
eqcomd |
|
16 |
13 15
|
eqtrd |
|
17 |
16
|
adantl |
|
18 |
|
clwwnrepclwwn |
|
19 |
11 12 17 18
|
syl3anc |
|
20 |
14
|
adantl |
|
21 |
19 20
|
jca |
|
22 |
|
simp1 |
|
23 |
22
|
anim1i |
|
24 |
23
|
adantr |
|
25 |
|
clwwlknlbonbgr1 |
|
26 |
24 25
|
syl |
|
27 |
|
oveq2 |
|
28 |
27
|
eqcoms |
|
29 |
28
|
adantr |
|
30 |
29
|
adantl |
|
31 |
26 30
|
eleqtrrd |
|
32 |
13
|
adantl |
|
33 |
21 31 32
|
3jca |
|
34 |
33
|
ex |
|
35 |
|
simpr |
|
36 |
35
|
anim1i |
|
37 |
36
|
3adant2 |
|
38 |
34 37
|
impbid1 |
|
39 |
|
2clwwlklem |
|
40 |
39
|
3ad2antr3 |
|
41 |
40
|
ancoms |
|
42 |
41
|
eqcomd |
|
43 |
42
|
eqeq1d |
|
44 |
43
|
anbi2d |
|
45 |
44
|
3anbi1d |
|
46 |
3
|
eleq2i |
|
47 |
|
isclwwlknon |
|
48 |
47
|
a1i |
|
49 |
46 48
|
syl5bb |
|
50 |
49
|
3anbi1d |
|
51 |
50
|
bicomd |
|
52 |
51
|
adantr |
|
53 |
38 45 52
|
3bitrd |
|
54 |
53
|
rabbidva |
|
55 |
10 54
|
eqtrid |
|
56 |
9 55
|
eqtrid |
|
57 |
7 56
|
eqtrd |
|