Metamath Proof Explorer


Theorem f1o2ndf1

Description: The 2nd (second component of an ordered pair) function restricted to a one-to-one function F is a one-to-one function from F onto the range of F . (Contributed by Alexander van der Vekens, 4-Feb-2018)

Ref Expression
Assertion f1o2ndf1 F:A1-1B2ndF:F1-1 ontoranF

Proof

Step Hyp Ref Expression
1 f1f F:A1-1BF:AB
2 fo2ndf F:AB2ndF:FontoranF
3 1 2 syl F:A1-1B2ndF:FontoranF
4 f2ndf F:AB2ndF:FB
5 1 4 syl F:A1-1B2ndF:FB
6 fssxp F:ABFA×B
7 1 6 syl F:A1-1BFA×B
8 ssel2 FA×BxFxA×B
9 elxp2 xA×BaAvBx=av
10 8 9 sylib FA×BxFaAvBx=av
11 ssel2 FA×ByFyA×B
12 elxp2 yA×BbAwBy=bw
13 11 12 sylib FA×ByFbAwBy=bw
14 10 13 anim12dan FA×BxFyFaAvBx=avbAwBy=bw
15 fvres avF2ndFav=2ndav
16 15 ad2antrr avFbwFaAvBbAwB2ndFav=2ndav
17 fvres bwF2ndFbw=2ndbw
18 17 ad2antlr avFbwFaAvBbAwB2ndFbw=2ndbw
19 16 18 eqeq12d avFbwFaAvBbAwB2ndFav=2ndFbw2ndav=2ndbw
20 vex aV
21 vex vV
22 20 21 op2nd 2ndav=v
23 vex bV
24 vex wV
25 23 24 op2nd 2ndbw=w
26 22 25 eqeq12i 2ndav=2ndbwv=w
27 f1fun F:A1-1BFunF
28 funopfv FunFavFFa=v
29 funopfv FunFbwFFb=w
30 28 29 anim12d FunFavFbwFFa=vFb=w
31 27 30 syl F:A1-1BavFbwFFa=vFb=w
32 eqcom Fa=vv=Fa
33 32 biimpi Fa=vv=Fa
34 eqcom Fb=ww=Fb
35 34 biimpi Fb=ww=Fb
36 33 35 eqeqan12d Fa=vFb=wv=wFa=Fb
37 simpl aAvBaA
38 simpl bAwBbA
39 37 38 anim12i aAvBbAwBaAbA
40 f1veqaeq F:A1-1BaAbAFa=Fba=b
41 39 40 sylan2 F:A1-1BaAvBbAwBFa=Fba=b
42 opeq12 a=bv=wav=bw
43 42 ex a=bv=wav=bw
44 41 43 syl6 F:A1-1BaAvBbAwBFa=Fbv=wav=bw
45 44 com23 F:A1-1BaAvBbAwBv=wFa=Fbav=bw
46 45 ex F:A1-1BaAvBbAwBv=wFa=Fbav=bw
47 46 com14 Fa=FbaAvBbAwBv=wF:A1-1Bav=bw
48 36 47 syl6bi Fa=vFb=wv=waAvBbAwBv=wF:A1-1Bav=bw
49 48 com14 v=wv=waAvBbAwBFa=vFb=wF:A1-1Bav=bw
50 49 pm2.43i v=waAvBbAwBFa=vFb=wF:A1-1Bav=bw
51 50 com14 F:A1-1BaAvBbAwBFa=vFb=wv=wav=bw
52 51 com23 F:A1-1BFa=vFb=waAvBbAwBv=wav=bw
53 31 52 syld F:A1-1BavFbwFaAvBbAwBv=wav=bw
54 53 com13 aAvBbAwBavFbwFF:A1-1Bv=wav=bw
55 54 impcom avFbwFaAvBbAwBF:A1-1Bv=wav=bw
56 55 com23 avFbwFaAvBbAwBv=wF:A1-1Bav=bw
57 26 56 biimtrid avFbwFaAvBbAwB2ndav=2ndbwF:A1-1Bav=bw
58 19 57 sylbid avFbwFaAvBbAwB2ndFav=2ndFbwF:A1-1Bav=bw
59 58 com23 avFbwFaAvBbAwBF:A1-1B2ndFav=2ndFbwav=bw
60 59 ex avFbwFaAvBbAwBF:A1-1B2ndFav=2ndFbwav=bw
61 60 adantl FA×BavFbwFaAvBbAwBF:A1-1B2ndFav=2ndFbwav=bw
62 61 com12 aAvBbAwBFA×BavFbwFF:A1-1B2ndFav=2ndFbwav=bw
63 62 ad4ant13 aAvBx=avbAwBy=bwFA×BavFbwFF:A1-1B2ndFav=2ndFbwav=bw
64 eleq1 x=avxFavF
65 64 ad2antlr aAvBx=avbAwBxFavF
66 eleq1 y=bwyFbwF
67 65 66 bi2anan9 aAvBx=avbAwBy=bwxFyFavFbwF
68 67 anbi2d aAvBx=avbAwBy=bwFA×BxFyFFA×BavFbwF
69 fveq2 x=av2ndFx=2ndFav
70 69 ad2antlr aAvBx=avbAwB2ndFx=2ndFav
71 fveq2 y=bw2ndFy=2ndFbw
72 70 71 eqeqan12d aAvBx=avbAwBy=bw2ndFx=2ndFy2ndFav=2ndFbw
73 simpllr aAvBx=avbAwBy=bwx=av
74 simpr aAvBx=avbAwBy=bwy=bw
75 73 74 eqeq12d aAvBx=avbAwBy=bwx=yav=bw
76 72 75 imbi12d aAvBx=avbAwBy=bw2ndFx=2ndFyx=y2ndFav=2ndFbwav=bw
77 76 imbi2d aAvBx=avbAwBy=bwF:A1-1B2ndFx=2ndFyx=yF:A1-1B2ndFav=2ndFbwav=bw
78 63 68 77 3imtr4d aAvBx=avbAwBy=bwFA×BxFyFF:A1-1B2ndFx=2ndFyx=y
79 78 ex aAvBx=avbAwBy=bwFA×BxFyFF:A1-1B2ndFx=2ndFyx=y
80 79 rexlimdvva aAvBx=avbAwBy=bwFA×BxFyFF:A1-1B2ndFx=2ndFyx=y
81 80 ex aAvBx=avbAwBy=bwFA×BxFyFF:A1-1B2ndFx=2ndFyx=y
82 81 rexlimivv aAvBx=avbAwBy=bwFA×BxFyFF:A1-1B2ndFx=2ndFyx=y
83 82 imp aAvBx=avbAwBy=bwFA×BxFyFF:A1-1B2ndFx=2ndFyx=y
84 14 83 mpcom FA×BxFyFF:A1-1B2ndFx=2ndFyx=y
85 84 ex FA×BxFyFF:A1-1B2ndFx=2ndFyx=y
86 85 com23 FA×BF:A1-1BxFyF2ndFx=2ndFyx=y
87 7 86 mpcom F:A1-1BxFyF2ndFx=2ndFyx=y
88 87 ralrimivv F:A1-1BxFyF2ndFx=2ndFyx=y
89 dff13 2ndF:F1-1B2ndF:FBxFyF2ndFx=2ndFyx=y
90 5 88 89 sylanbrc F:A1-1B2ndF:F1-1B
91 df-f1 2ndF:F1-1B2ndF:FBFun2ndF-1
92 91 simprbi 2ndF:F1-1BFun2ndF-1
93 90 92 syl F:A1-1BFun2ndF-1
94 dff1o3 2ndF:F1-1 ontoranF2ndF:FontoranFFun2ndF-1
95 3 93 94 sylanbrc F:A1-1B2ndF:F1-1 ontoranF