Metamath Proof Explorer


Theorem f1prex

Description: Relate a one-to-one function with a pair as domain and two different variables. (Contributed by Thierry Arnoux, 12-Jul-2020)

Ref Expression
Hypotheses f1prex.1 x=fAψχ
f1prex.2 y=fBχφ
Assertion f1prex AVBWABff:AB1-1DφxDyDxyψ

Proof

Step Hyp Ref Expression
1 f1prex.1 x=fAψχ
2 f1prex.2 y=fBχφ
3 simpl1 AVBWABf:AB1-1DφAV
4 simpl2 AVBWABf:AB1-1DφBW
5 simprl AVBWABf:AB1-1Dφf:AB1-1D
6 f1f f:AB1-1Df:ABD
7 5 6 syl AVBWABf:AB1-1Dφf:ABD
8 fpr2g AVBWf:ABDfADfBDf=AfABfB
9 8 biimpa AVBWf:ABDfADfBDf=AfABfB
10 9 simp1d AVBWf:ABDfAD
11 3 4 7 10 syl21anc AVBWABf:AB1-1DφfAD
12 9 simp2d AVBWf:ABDfBD
13 3 4 7 12 syl21anc AVBWABf:AB1-1DφfBD
14 prid1g AVAAB
15 3 14 syl AVBWABf:AB1-1DφAAB
16 prid2g BWBAB
17 4 16 syl AVBWABf:AB1-1DφBAB
18 15 17 jca AVBWABf:AB1-1DφAABBAB
19 simpl3 AVBWABf:AB1-1DφAB
20 f1veqaeq f:AB1-1DAABBABfA=fBA=B
21 20 necon3d f:AB1-1DAABBABABfAfB
22 21 imp f:AB1-1DAABBABABfAfB
23 5 18 19 22 syl21anc AVBWABf:AB1-1DφfAfB
24 simprr AVBWABf:AB1-1Dφφ
25 23 24 jca AVBWABf:AB1-1DφfAfBφ
26 neeq1 x=fAxyfAy
27 26 1 anbi12d x=fAxyψfAyχ
28 neeq2 y=fBfAyfAfB
29 28 2 anbi12d y=fBfAyχfAfBφ
30 27 29 rspc2ev fADfBDfAfBφxDyDxyψ
31 11 13 25 30 syl3anc AVBWABf:AB1-1DφxDyDxyψ
32 31 ex AVBWABf:AB1-1DφxDyDxyψ
33 32 exlimdv AVBWABff:AB1-1DφxDyDxyψ
34 simpll1 AVBWABxDyDxyψAV
35 simplrl AVBWABxDyDxyψxD
36 34 35 jca AVBWABxDyDxyψAVxD
37 simpll2 AVBWABxDyDxyψBW
38 simplrr AVBWABxDyDxyψyD
39 37 38 jca AVBWABxDyDxyψBWyD
40 simpll3 AVBWABxDyDxyψAB
41 simprl AVBWABxDyDxyψxy
42 f1oprg AVxDBWyDABxyAxBy:AB1-1 ontoxy
43 42 imp AVxDBWyDABxyAxBy:AB1-1 ontoxy
44 36 39 40 41 43 syl22anc AVBWABxDyDxyψAxBy:AB1-1 ontoxy
45 f1of1 AxBy:AB1-1 ontoxyAxBy:AB1-1xy
46 44 45 syl AVBWABxDyDxyψAxBy:AB1-1xy
47 35 38 prssd AVBWABxDyDxyψxyD
48 f1ss AxBy:AB1-1xyxyDAxBy:AB1-1D
49 46 47 48 syl2anc AVBWABxDyDxyψAxBy:AB1-1D
50 fvpr1g AVxDABAxByA=x
51 50 eqcomd AVxDABx=AxByA
52 34 35 40 51 syl3anc AVBWABxDyDxyψx=AxByA
53 fvpr2g BWyDABAxByB=y
54 53 eqcomd BWyDABy=AxByB
55 37 38 40 54 syl3anc AVBWABxDyDxyψy=AxByB
56 prex AxByV
57 f1eq1 f=AxByf:AB1-1DAxBy:AB1-1D
58 fveq1 f=AxByfA=AxByA
59 58 eqeq2d f=AxByx=fAx=AxByA
60 fveq1 f=AxByfB=AxByB
61 60 eqeq2d f=AxByy=fBy=AxByB
62 59 61 anbi12d f=AxByx=fAy=fBx=AxByAy=AxByB
63 57 62 anbi12d f=AxByf:AB1-1Dx=fAy=fBAxBy:AB1-1Dx=AxByAy=AxByB
64 56 63 spcev AxBy:AB1-1Dx=AxByAy=AxByBff:AB1-1Dx=fAy=fB
65 49 52 55 64 syl12anc AVBWABxDyDxyψff:AB1-1Dx=fAy=fB
66 simprl AVBWABxDyDxyψf:AB1-1Dx=fAy=fBf:AB1-1D
67 simplrr AVBWABxDyDxyψf:AB1-1Dx=fAy=fBψ
68 simprrl AVBWABxDyDxyψf:AB1-1Dx=fAy=fBx=fA
69 68 1 syl AVBWABxDyDxyψf:AB1-1Dx=fAy=fBψχ
70 67 69 mpbid AVBWABxDyDxyψf:AB1-1Dx=fAy=fBχ
71 simprrr AVBWABxDyDxyψf:AB1-1Dx=fAy=fBy=fB
72 71 2 syl AVBWABxDyDxyψf:AB1-1Dx=fAy=fBχφ
73 70 72 mpbid AVBWABxDyDxyψf:AB1-1Dx=fAy=fBφ
74 66 73 jca AVBWABxDyDxyψf:AB1-1Dx=fAy=fBf:AB1-1Dφ
75 74 ex AVBWABxDyDxyψf:AB1-1Dx=fAy=fBf:AB1-1Dφ
76 75 eximdv AVBWABxDyDxyψff:AB1-1Dx=fAy=fBff:AB1-1Dφ
77 65 76 mpd AVBWABxDyDxyψff:AB1-1Dφ
78 77 ex AVBWABxDyDxyψff:AB1-1Dφ
79 78 rexlimdvva AVBWABxDyDxyψff:AB1-1Dφ
80 33 79 impbid AVBWABff:AB1-1DφxDyDxyψ