| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1prex.1 |
|
| 2 |
|
f1prex.2 |
|
| 3 |
|
simpl1 |
|
| 4 |
|
simpl2 |
|
| 5 |
|
simprl |
|
| 6 |
|
f1f |
|
| 7 |
5 6
|
syl |
|
| 8 |
|
fpr2g |
|
| 9 |
8
|
biimpa |
|
| 10 |
9
|
simp1d |
|
| 11 |
3 4 7 10
|
syl21anc |
|
| 12 |
9
|
simp2d |
|
| 13 |
3 4 7 12
|
syl21anc |
|
| 14 |
|
prid1g |
|
| 15 |
3 14
|
syl |
|
| 16 |
|
prid2g |
|
| 17 |
4 16
|
syl |
|
| 18 |
15 17
|
jca |
|
| 19 |
|
simpl3 |
|
| 20 |
|
f1veqaeq |
|
| 21 |
20
|
necon3d |
|
| 22 |
21
|
imp |
|
| 23 |
5 18 19 22
|
syl21anc |
|
| 24 |
|
simprr |
|
| 25 |
23 24
|
jca |
|
| 26 |
|
neeq1 |
|
| 27 |
26 1
|
anbi12d |
|
| 28 |
|
neeq2 |
|
| 29 |
28 2
|
anbi12d |
|
| 30 |
27 29
|
rspc2ev |
|
| 31 |
11 13 25 30
|
syl3anc |
|
| 32 |
31
|
ex |
|
| 33 |
32
|
exlimdv |
|
| 34 |
|
simpll1 |
|
| 35 |
|
simplrl |
|
| 36 |
34 35
|
jca |
|
| 37 |
|
simpll2 |
|
| 38 |
|
simplrr |
|
| 39 |
37 38
|
jca |
|
| 40 |
|
simpll3 |
|
| 41 |
|
simprl |
|
| 42 |
|
f1oprg |
|
| 43 |
42
|
imp |
|
| 44 |
36 39 40 41 43
|
syl22anc |
|
| 45 |
|
f1of1 |
|
| 46 |
44 45
|
syl |
|
| 47 |
35 38
|
prssd |
|
| 48 |
|
f1ss |
|
| 49 |
46 47 48
|
syl2anc |
|
| 50 |
|
fvpr1g |
|
| 51 |
50
|
eqcomd |
|
| 52 |
34 35 40 51
|
syl3anc |
|
| 53 |
|
fvpr2g |
|
| 54 |
53
|
eqcomd |
|
| 55 |
37 38 40 54
|
syl3anc |
|
| 56 |
|
prex |
|
| 57 |
|
f1eq1 |
|
| 58 |
|
fveq1 |
|
| 59 |
58
|
eqeq2d |
|
| 60 |
|
fveq1 |
|
| 61 |
60
|
eqeq2d |
|
| 62 |
59 61
|
anbi12d |
|
| 63 |
57 62
|
anbi12d |
|
| 64 |
56 63
|
spcev |
|
| 65 |
49 52 55 64
|
syl12anc |
|
| 66 |
|
simprl |
|
| 67 |
|
simplrr |
|
| 68 |
|
simprrl |
|
| 69 |
68 1
|
syl |
|
| 70 |
67 69
|
mpbid |
|
| 71 |
|
simprrr |
|
| 72 |
71 2
|
syl |
|
| 73 |
70 72
|
mpbid |
|
| 74 |
66 73
|
jca |
|
| 75 |
74
|
ex |
|
| 76 |
75
|
eximdv |
|
| 77 |
65 76
|
mpd |
|
| 78 |
77
|
ex |
|
| 79 |
78
|
rexlimdvva |
|
| 80 |
33 79
|
impbid |
|