Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Factorial limits
faclim2
Next ⟩
Greatest common divisor and divisibility
Metamath Proof Explorer
Ascii
Unicode
Theorem
faclim2
Description:
Another factorial limit due to Euler.
(Contributed by
Scott Fenton
, 17-Dec-2017)
Ref
Expression
Hypothesis
faclim2.1
⊢
F
=
n
∈
ℕ
⟼
n
!
n
+
1
M
n
+
M
!
Assertion
faclim2
⊢
M
∈
ℕ
0
→
F
⇝
1
Proof
Step
Hyp
Ref
Expression
1
faclim2.1
⊢
F
=
n
∈
ℕ
⟼
n
!
n
+
1
M
n
+
M
!
2
oveq2
⊢
a
=
0
→
n
+
1
a
=
n
+
1
0
3
2
oveq2d
⊢
a
=
0
→
n
!
n
+
1
a
=
n
!
n
+
1
0
4
oveq2
⊢
a
=
0
→
n
+
a
=
n
+
0
5
4
fveq2d
⊢
a
=
0
→
n
+
a
!
=
n
+
0
!
6
3
5
oveq12d
⊢
a
=
0
→
n
!
n
+
1
a
n
+
a
!
=
n
!
n
+
1
0
n
+
0
!
7
6
mpteq2dv
⊢
a
=
0
→
n
∈
ℕ
⟼
n
!
n
+
1
a
n
+
a
!
=
n
∈
ℕ
⟼
n
!
n
+
1
0
n
+
0
!
8
7
breq1d
⊢
a
=
0
→
n
∈
ℕ
⟼
n
!
n
+
1
a
n
+
a
!
⇝
1
↔
n
∈
ℕ
⟼
n
!
n
+
1
0
n
+
0
!
⇝
1
9
oveq2
⊢
a
=
m
→
n
+
1
a
=
n
+
1
m
10
9
oveq2d
⊢
a
=
m
→
n
!
n
+
1
a
=
n
!
n
+
1
m
11
oveq2
⊢
a
=
m
→
n
+
a
=
n
+
m
12
11
fveq2d
⊢
a
=
m
→
n
+
a
!
=
n
+
m
!
13
10
12
oveq12d
⊢
a
=
m
→
n
!
n
+
1
a
n
+
a
!
=
n
!
n
+
1
m
n
+
m
!
14
13
mpteq2dv
⊢
a
=
m
→
n
∈
ℕ
⟼
n
!
n
+
1
a
n
+
a
!
=
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
15
14
breq1d
⊢
a
=
m
→
n
∈
ℕ
⟼
n
!
n
+
1
a
n
+
a
!
⇝
1
↔
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
16
oveq2
⊢
a
=
m
+
1
→
n
+
1
a
=
n
+
1
m
+
1
17
16
oveq2d
⊢
a
=
m
+
1
→
n
!
n
+
1
a
=
n
!
n
+
1
m
+
1
18
oveq2
⊢
a
=
m
+
1
→
n
+
a
=
n
+
m
+
1
19
18
fveq2d
⊢
a
=
m
+
1
→
n
+
a
!
=
n
+
m
+
1
!
20
17
19
oveq12d
⊢
a
=
m
+
1
→
n
!
n
+
1
a
n
+
a
!
=
n
!
n
+
1
m
+
1
n
+
m
+
1
!
21
20
mpteq2dv
⊢
a
=
m
+
1
→
n
∈
ℕ
⟼
n
!
n
+
1
a
n
+
a
!
=
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
22
21
breq1d
⊢
a
=
m
+
1
→
n
∈
ℕ
⟼
n
!
n
+
1
a
n
+
a
!
⇝
1
↔
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
⇝
1
23
oveq2
⊢
a
=
M
→
n
+
1
a
=
n
+
1
M
24
23
oveq2d
⊢
a
=
M
→
n
!
n
+
1
a
=
n
!
n
+
1
M
25
oveq2
⊢
a
=
M
→
n
+
a
=
n
+
M
26
25
fveq2d
⊢
a
=
M
→
n
+
a
!
=
n
+
M
!
27
24
26
oveq12d
⊢
a
=
M
→
n
!
n
+
1
a
n
+
a
!
=
n
!
n
+
1
M
n
+
M
!
28
27
mpteq2dv
⊢
a
=
M
→
n
∈
ℕ
⟼
n
!
n
+
1
a
n
+
a
!
=
n
∈
ℕ
⟼
n
!
n
+
1
M
n
+
M
!
29
28
breq1d
⊢
a
=
M
→
n
∈
ℕ
⟼
n
!
n
+
1
a
n
+
a
!
⇝
1
↔
n
∈
ℕ
⟼
n
!
n
+
1
M
n
+
M
!
⇝
1
30
nnuz
⊢
ℕ
=
ℤ
≥
1
31
1zzd
⊢
⊤
→
1
∈
ℤ
32
nnex
⊢
ℕ
∈
V
33
32
mptex
⊢
n
∈
ℕ
⟼
n
!
n
+
1
0
n
+
0
!
∈
V
34
33
a1i
⊢
⊤
→
n
∈
ℕ
⟼
n
!
n
+
1
0
n
+
0
!
∈
V
35
1cnd
⊢
⊤
→
1
∈
ℂ
36
fveq2
⊢
n
=
m
→
n
!
=
m
!
37
oveq1
⊢
n
=
m
→
n
+
1
=
m
+
1
38
37
oveq1d
⊢
n
=
m
→
n
+
1
0
=
m
+
1
0
39
36
38
oveq12d
⊢
n
=
m
→
n
!
n
+
1
0
=
m
!
m
+
1
0
40
fvoveq1
⊢
n
=
m
→
n
+
0
!
=
m
+
0
!
41
39
40
oveq12d
⊢
n
=
m
→
n
!
n
+
1
0
n
+
0
!
=
m
!
m
+
1
0
m
+
0
!
42
eqid
⊢
n
∈
ℕ
⟼
n
!
n
+
1
0
n
+
0
!
=
n
∈
ℕ
⟼
n
!
n
+
1
0
n
+
0
!
43
ovex
⊢
m
!
m
+
1
0
m
+
0
!
∈
V
44
41
42
43
fvmpt
⊢
m
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
0
n
+
0
!
m
=
m
!
m
+
1
0
m
+
0
!
45
peano2nn
⊢
m
∈
ℕ
→
m
+
1
∈
ℕ
46
45
nncnd
⊢
m
∈
ℕ
→
m
+
1
∈
ℂ
47
46
exp0d
⊢
m
∈
ℕ
→
m
+
1
0
=
1
48
47
oveq2d
⊢
m
∈
ℕ
→
m
!
m
+
1
0
=
m
!
⋅
1
49
nnnn0
⊢
m
∈
ℕ
→
m
∈
ℕ
0
50
faccl
⊢
m
∈
ℕ
0
→
m
!
∈
ℕ
51
49
50
syl
⊢
m
∈
ℕ
→
m
!
∈
ℕ
52
51
nncnd
⊢
m
∈
ℕ
→
m
!
∈
ℂ
53
52
mulridd
⊢
m
∈
ℕ
→
m
!
⋅
1
=
m
!
54
48
53
eqtrd
⊢
m
∈
ℕ
→
m
!
m
+
1
0
=
m
!
55
nncn
⊢
m
∈
ℕ
→
m
∈
ℂ
56
55
addridd
⊢
m
∈
ℕ
→
m
+
0
=
m
57
56
fveq2d
⊢
m
∈
ℕ
→
m
+
0
!
=
m
!
58
54
57
oveq12d
⊢
m
∈
ℕ
→
m
!
m
+
1
0
m
+
0
!
=
m
!
m
!
59
51
nnne0d
⊢
m
∈
ℕ
→
m
!
≠
0
60
52
59
dividd
⊢
m
∈
ℕ
→
m
!
m
!
=
1
61
44
58
60
3eqtrd
⊢
m
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
0
n
+
0
!
m
=
1
62
61
adantl
⊢
⊤
∧
m
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
0
n
+
0
!
m
=
1
63
30
31
34
35
62
climconst
⊢
⊤
→
n
∈
ℕ
⟼
n
!
n
+
1
0
n
+
0
!
⇝
1
64
63
mptru
⊢
n
∈
ℕ
⟼
n
!
n
+
1
0
n
+
0
!
⇝
1
65
1zzd
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
→
1
∈
ℤ
66
simpr
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
→
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
67
32
mptex
⊢
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
∈
V
68
67
a1i
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
→
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
∈
V
69
1zzd
⊢
m
∈
ℕ
0
→
1
∈
ℤ
70
1cnd
⊢
m
∈
ℕ
0
→
1
∈
ℂ
71
nn0p1nn
⊢
m
∈
ℕ
0
→
m
+
1
∈
ℕ
72
71
nnzd
⊢
m
∈
ℕ
0
→
m
+
1
∈
ℤ
73
32
mptex
⊢
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
∈
V
74
73
a1i
⊢
m
∈
ℕ
0
→
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
∈
V
75
oveq1
⊢
n
=
k
→
n
+
1
=
k
+
1
76
oveq1
⊢
n
=
k
→
n
+
m
+
1
=
k
+
m
+
1
77
75
76
oveq12d
⊢
n
=
k
→
n
+
1
n
+
m
+
1
=
k
+
1
k
+
m
+
1
78
eqid
⊢
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
=
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
79
ovex
⊢
k
+
1
k
+
m
+
1
∈
V
80
77
78
79
fvmpt
⊢
k
∈
ℕ
→
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
k
=
k
+
1
k
+
m
+
1
81
80
adantl
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
k
=
k
+
1
k
+
m
+
1
82
30
69
70
72
74
81
divcnvlin
⊢
m
∈
ℕ
0
→
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
⇝
1
83
82
adantr
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
→
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
⇝
1
84
simpr
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
∈
ℕ
85
84
nnnn0d
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
∈
ℕ
0
86
faccl
⊢
n
∈
ℕ
0
→
n
!
∈
ℕ
87
85
86
syl
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
!
∈
ℕ
88
peano2nn
⊢
n
∈
ℕ
→
n
+
1
∈
ℕ
89
nnexpcl
⊢
n
+
1
∈
ℕ
∧
m
∈
ℕ
0
→
n
+
1
m
∈
ℕ
90
88
89
sylan
⊢
n
∈
ℕ
∧
m
∈
ℕ
0
→
n
+
1
m
∈
ℕ
91
90
ancoms
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
+
1
m
∈
ℕ
92
87
91
nnmulcld
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
!
n
+
1
m
∈
ℕ
93
92
nnred
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
!
n
+
1
m
∈
ℝ
94
nnnn0addcl
⊢
n
∈
ℕ
∧
m
∈
ℕ
0
→
n
+
m
∈
ℕ
95
94
ancoms
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
+
m
∈
ℕ
96
95
nnnn0d
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
+
m
∈
ℕ
0
97
faccl
⊢
n
+
m
∈
ℕ
0
→
n
+
m
!
∈
ℕ
98
96
97
syl
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
+
m
!
∈
ℕ
99
93
98
nndivred
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
!
n
+
1
m
n
+
m
!
∈
ℝ
100
99
recnd
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
!
n
+
1
m
n
+
m
!
∈
ℂ
101
100
fmpttd
⊢
m
∈
ℕ
0
→
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
:
ℕ
⟶
ℂ
102
101
ffvelcdmda
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
k
∈
ℂ
103
102
adantlr
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
∧
k
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
k
∈
ℂ
104
88
adantl
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
+
1
∈
ℕ
105
104
nnred
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
+
1
∈
ℝ
106
71
adantr
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
m
+
1
∈
ℕ
107
84
106
nnaddcld
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
+
m
+
1
∈
ℕ
108
105
107
nndivred
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
+
1
n
+
m
+
1
∈
ℝ
109
108
recnd
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
→
n
+
1
n
+
m
+
1
∈
ℂ
110
109
fmpttd
⊢
m
∈
ℕ
0
→
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
:
ℕ
⟶
ℂ
111
110
ffvelcdmda
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
k
∈
ℂ
112
111
adantlr
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
∧
k
∈
ℕ
→
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
k
∈
ℂ
113
peano2nn
⊢
k
∈
ℕ
→
k
+
1
∈
ℕ
114
113
adantl
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
1
∈
ℕ
115
114
nncnd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
1
∈
ℂ
116
simpl
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
m
∈
ℕ
0
117
115
116
expp1d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
1
m
+
1
=
k
+
1
m
k
+
1
118
117
oveq2d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
!
k
+
1
m
+
1
=
k
!
k
+
1
m
k
+
1
119
simpr
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
∈
ℕ
120
119
nnnn0d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
∈
ℕ
0
121
faccl
⊢
k
∈
ℕ
0
→
k
!
∈
ℕ
122
120
121
syl
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
!
∈
ℕ
123
122
nncnd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
!
∈
ℂ
124
nnexpcl
⊢
k
+
1
∈
ℕ
∧
m
∈
ℕ
0
→
k
+
1
m
∈
ℕ
125
113
124
sylan
⊢
k
∈
ℕ
∧
m
∈
ℕ
0
→
k
+
1
m
∈
ℕ
126
125
ancoms
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
1
m
∈
ℕ
127
126
nncnd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
1
m
∈
ℂ
128
123
127
115
mulassd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
!
k
+
1
m
k
+
1
=
k
!
k
+
1
m
k
+
1
129
118
128
eqtr4d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
!
k
+
1
m
+
1
=
k
!
k
+
1
m
k
+
1
130
120
116
nn0addcld
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
∈
ℕ
0
131
facp1
⊢
k
+
m
∈
ℕ
0
→
k
+
m
+
1
!
=
k
+
m
!
k
+
m
+
1
132
130
131
syl
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
+
1
!
=
k
+
m
!
k
+
m
+
1
133
119
nncnd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
∈
ℂ
134
116
nn0cnd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
m
∈
ℂ
135
1cnd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
1
∈
ℂ
136
133
134
135
addassd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
+
1
=
k
+
m
+
1
137
136
fveq2d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
+
1
!
=
k
+
m
+
1
!
138
136
oveq2d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
!
k
+
m
+
1
=
k
+
m
!
k
+
m
+
1
139
132
137
138
3eqtr3d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
+
1
!
=
k
+
m
!
k
+
m
+
1
140
129
139
oveq12d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
!
k
+
1
m
+
1
k
+
m
+
1
!
=
k
!
k
+
1
m
k
+
1
k
+
m
!
k
+
m
+
1
141
122
126
nnmulcld
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
!
k
+
1
m
∈
ℕ
142
141
nncnd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
!
k
+
1
m
∈
ℂ
143
faccl
⊢
k
+
m
∈
ℕ
0
→
k
+
m
!
∈
ℕ
144
130
143
syl
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
!
∈
ℕ
145
144
nncnd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
!
∈
ℂ
146
71
adantr
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
m
+
1
∈
ℕ
147
119
146
nnaddcld
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
+
1
∈
ℕ
148
147
nncnd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
+
1
∈
ℂ
149
144
nnne0d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
!
≠
0
150
147
nnne0d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
+
m
+
1
≠
0
151
142
145
115
148
149
150
divmuldivd
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
!
k
+
1
m
k
+
m
!
k
+
1
k
+
m
+
1
=
k
!
k
+
1
m
k
+
1
k
+
m
!
k
+
m
+
1
152
140
151
eqtr4d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
k
!
k
+
1
m
+
1
k
+
m
+
1
!
=
k
!
k
+
1
m
k
+
m
!
k
+
1
k
+
m
+
1
153
fveq2
⊢
n
=
k
→
n
!
=
k
!
154
75
oveq1d
⊢
n
=
k
→
n
+
1
m
+
1
=
k
+
1
m
+
1
155
153
154
oveq12d
⊢
n
=
k
→
n
!
n
+
1
m
+
1
=
k
!
k
+
1
m
+
1
156
fvoveq1
⊢
n
=
k
→
n
+
m
+
1
!
=
k
+
m
+
1
!
157
155
156
oveq12d
⊢
n
=
k
→
n
!
n
+
1
m
+
1
n
+
m
+
1
!
=
k
!
k
+
1
m
+
1
k
+
m
+
1
!
158
eqid
⊢
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
=
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
159
ovex
⊢
k
!
k
+
1
m
+
1
k
+
m
+
1
!
∈
V
160
157
158
159
fvmpt
⊢
k
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
k
=
k
!
k
+
1
m
+
1
k
+
m
+
1
!
161
160
adantl
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
k
=
k
!
k
+
1
m
+
1
k
+
m
+
1
!
162
75
oveq1d
⊢
n
=
k
→
n
+
1
m
=
k
+
1
m
163
153
162
oveq12d
⊢
n
=
k
→
n
!
n
+
1
m
=
k
!
k
+
1
m
164
fvoveq1
⊢
n
=
k
→
n
+
m
!
=
k
+
m
!
165
163
164
oveq12d
⊢
n
=
k
→
n
!
n
+
1
m
n
+
m
!
=
k
!
k
+
1
m
k
+
m
!
166
eqid
⊢
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
=
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
167
ovex
⊢
k
!
k
+
1
m
k
+
m
!
∈
V
168
165
166
167
fvmpt
⊢
k
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
k
=
k
!
k
+
1
m
k
+
m
!
169
168
80
oveq12d
⊢
k
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
k
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
k
=
k
!
k
+
1
m
k
+
m
!
k
+
1
k
+
m
+
1
170
169
adantl
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
k
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
k
=
k
!
k
+
1
m
k
+
m
!
k
+
1
k
+
m
+
1
171
152
161
170
3eqtr4d
⊢
m
∈
ℕ
0
∧
k
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
k
=
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
k
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
k
172
171
adantlr
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
∧
k
∈
ℕ
→
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
k
=
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
k
n
∈
ℕ
⟼
n
+
1
n
+
m
+
1
k
173
30
65
66
68
83
103
112
172
climmul
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
→
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
⇝
1
⋅
1
174
1t1e1
⊢
1
⋅
1
=
1
175
173
174
breqtrdi
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
→
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
⇝
1
176
175
ex
⊢
m
∈
ℕ
0
→
n
∈
ℕ
⟼
n
!
n
+
1
m
n
+
m
!
⇝
1
→
n
∈
ℕ
⟼
n
!
n
+
1
m
+
1
n
+
m
+
1
!
⇝
1
177
8
15
22
29
64
176
nn0ind
⊢
M
∈
ℕ
0
→
n
∈
ℕ
⟼
n
!
n
+
1
M
n
+
M
!
⇝
1
178
1
177
eqbrtrid
⊢
M
∈
ℕ
0
→
F
⇝
1