| Step |
Hyp |
Ref |
Expression |
| 1 |
|
faclim2.1 |
|
| 2 |
|
oveq2 |
|
| 3 |
2
|
oveq2d |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
fveq2d |
|
| 6 |
3 5
|
oveq12d |
|
| 7 |
6
|
mpteq2dv |
|
| 8 |
7
|
breq1d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
oveq2d |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
fveq2d |
|
| 13 |
10 12
|
oveq12d |
|
| 14 |
13
|
mpteq2dv |
|
| 15 |
14
|
breq1d |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
fveq2d |
|
| 20 |
17 19
|
oveq12d |
|
| 21 |
20
|
mpteq2dv |
|
| 22 |
21
|
breq1d |
|
| 23 |
|
oveq2 |
|
| 24 |
23
|
oveq2d |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
fveq2d |
|
| 27 |
24 26
|
oveq12d |
|
| 28 |
27
|
mpteq2dv |
|
| 29 |
28
|
breq1d |
|
| 30 |
|
nnuz |
|
| 31 |
|
1zzd |
|
| 32 |
|
nnex |
|
| 33 |
32
|
mptex |
|
| 34 |
33
|
a1i |
|
| 35 |
|
1cnd |
|
| 36 |
|
fveq2 |
|
| 37 |
|
oveq1 |
|
| 38 |
37
|
oveq1d |
|
| 39 |
36 38
|
oveq12d |
|
| 40 |
|
fvoveq1 |
|
| 41 |
39 40
|
oveq12d |
|
| 42 |
|
eqid |
|
| 43 |
|
ovex |
|
| 44 |
41 42 43
|
fvmpt |
|
| 45 |
|
peano2nn |
|
| 46 |
45
|
nncnd |
|
| 47 |
46
|
exp0d |
|
| 48 |
47
|
oveq2d |
|
| 49 |
|
nnnn0 |
|
| 50 |
|
faccl |
|
| 51 |
49 50
|
syl |
|
| 52 |
51
|
nncnd |
|
| 53 |
52
|
mulridd |
|
| 54 |
48 53
|
eqtrd |
|
| 55 |
|
nncn |
|
| 56 |
55
|
addridd |
|
| 57 |
56
|
fveq2d |
|
| 58 |
54 57
|
oveq12d |
|
| 59 |
51
|
nnne0d |
|
| 60 |
52 59
|
dividd |
|
| 61 |
44 58 60
|
3eqtrd |
|
| 62 |
61
|
adantl |
|
| 63 |
30 31 34 35 62
|
climconst |
|
| 64 |
63
|
mptru |
|
| 65 |
|
1zzd |
|
| 66 |
|
simpr |
|
| 67 |
32
|
mptex |
|
| 68 |
67
|
a1i |
|
| 69 |
|
1zzd |
|
| 70 |
|
1cnd |
|
| 71 |
|
nn0p1nn |
|
| 72 |
71
|
nnzd |
|
| 73 |
32
|
mptex |
|
| 74 |
73
|
a1i |
|
| 75 |
|
oveq1 |
|
| 76 |
|
oveq1 |
|
| 77 |
75 76
|
oveq12d |
|
| 78 |
|
eqid |
|
| 79 |
|
ovex |
|
| 80 |
77 78 79
|
fvmpt |
|
| 81 |
80
|
adantl |
|
| 82 |
30 69 70 72 74 81
|
divcnvlin |
|
| 83 |
82
|
adantr |
|
| 84 |
|
simpr |
|
| 85 |
84
|
nnnn0d |
|
| 86 |
|
faccl |
|
| 87 |
85 86
|
syl |
|
| 88 |
|
peano2nn |
|
| 89 |
|
nnexpcl |
|
| 90 |
88 89
|
sylan |
|
| 91 |
90
|
ancoms |
|
| 92 |
87 91
|
nnmulcld |
|
| 93 |
92
|
nnred |
|
| 94 |
|
nnnn0addcl |
|
| 95 |
94
|
ancoms |
|
| 96 |
95
|
nnnn0d |
|
| 97 |
|
faccl |
|
| 98 |
96 97
|
syl |
|
| 99 |
93 98
|
nndivred |
|
| 100 |
99
|
recnd |
|
| 101 |
100
|
fmpttd |
|
| 102 |
101
|
ffvelcdmda |
|
| 103 |
102
|
adantlr |
|
| 104 |
88
|
adantl |
|
| 105 |
104
|
nnred |
|
| 106 |
71
|
adantr |
|
| 107 |
84 106
|
nnaddcld |
|
| 108 |
105 107
|
nndivred |
|
| 109 |
108
|
recnd |
|
| 110 |
109
|
fmpttd |
|
| 111 |
110
|
ffvelcdmda |
|
| 112 |
111
|
adantlr |
|
| 113 |
|
peano2nn |
|
| 114 |
113
|
adantl |
|
| 115 |
114
|
nncnd |
|
| 116 |
|
simpl |
|
| 117 |
115 116
|
expp1d |
|
| 118 |
117
|
oveq2d |
|
| 119 |
|
simpr |
|
| 120 |
119
|
nnnn0d |
|
| 121 |
|
faccl |
|
| 122 |
120 121
|
syl |
|
| 123 |
122
|
nncnd |
|
| 124 |
|
nnexpcl |
|
| 125 |
113 124
|
sylan |
|
| 126 |
125
|
ancoms |
|
| 127 |
126
|
nncnd |
|
| 128 |
123 127 115
|
mulassd |
|
| 129 |
118 128
|
eqtr4d |
|
| 130 |
120 116
|
nn0addcld |
|
| 131 |
|
facp1 |
|
| 132 |
130 131
|
syl |
|
| 133 |
119
|
nncnd |
|
| 134 |
116
|
nn0cnd |
|
| 135 |
|
1cnd |
|
| 136 |
133 134 135
|
addassd |
|
| 137 |
136
|
fveq2d |
|
| 138 |
136
|
oveq2d |
|
| 139 |
132 137 138
|
3eqtr3d |
|
| 140 |
129 139
|
oveq12d |
|
| 141 |
122 126
|
nnmulcld |
|
| 142 |
141
|
nncnd |
|
| 143 |
|
faccl |
|
| 144 |
130 143
|
syl |
|
| 145 |
144
|
nncnd |
|
| 146 |
71
|
adantr |
|
| 147 |
119 146
|
nnaddcld |
|
| 148 |
147
|
nncnd |
|
| 149 |
144
|
nnne0d |
|
| 150 |
147
|
nnne0d |
|
| 151 |
142 145 115 148 149 150
|
divmuldivd |
|
| 152 |
140 151
|
eqtr4d |
|
| 153 |
|
fveq2 |
|
| 154 |
75
|
oveq1d |
|
| 155 |
153 154
|
oveq12d |
|
| 156 |
|
fvoveq1 |
|
| 157 |
155 156
|
oveq12d |
|
| 158 |
|
eqid |
|
| 159 |
|
ovex |
|
| 160 |
157 158 159
|
fvmpt |
|
| 161 |
160
|
adantl |
|
| 162 |
75
|
oveq1d |
|
| 163 |
153 162
|
oveq12d |
|
| 164 |
|
fvoveq1 |
|
| 165 |
163 164
|
oveq12d |
|
| 166 |
|
eqid |
|
| 167 |
|
ovex |
|
| 168 |
165 166 167
|
fvmpt |
|
| 169 |
168 80
|
oveq12d |
|
| 170 |
169
|
adantl |
|
| 171 |
152 161 170
|
3eqtr4d |
|
| 172 |
171
|
adantlr |
|
| 173 |
30 65 66 68 83 103 112 172
|
climmul |
|
| 174 |
|
1t1e1 |
|
| 175 |
173 174
|
breqtrdi |
|
| 176 |
175
|
ex |
|
| 177 |
8 15 22 29 64 176
|
nn0ind |
|
| 178 |
1 177
|
eqbrtrid |
|