Metamath Proof Explorer


Theorem faclim2

Description: Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017)

Ref Expression
Hypothesis faclim2.1 F=nn!n+1Mn+M!
Assertion faclim2 M0F1

Proof

Step Hyp Ref Expression
1 faclim2.1 F=nn!n+1Mn+M!
2 oveq2 a=0n+1a=n+10
3 2 oveq2d a=0n!n+1a=n!n+10
4 oveq2 a=0n+a=n+0
5 4 fveq2d a=0n+a!=n+0!
6 3 5 oveq12d a=0n!n+1an+a!=n!n+10n+0!
7 6 mpteq2dv a=0nn!n+1an+a!=nn!n+10n+0!
8 7 breq1d a=0nn!n+1an+a!1nn!n+10n+0!1
9 oveq2 a=mn+1a=n+1m
10 9 oveq2d a=mn!n+1a=n!n+1m
11 oveq2 a=mn+a=n+m
12 11 fveq2d a=mn+a!=n+m!
13 10 12 oveq12d a=mn!n+1an+a!=n!n+1mn+m!
14 13 mpteq2dv a=mnn!n+1an+a!=nn!n+1mn+m!
15 14 breq1d a=mnn!n+1an+a!1nn!n+1mn+m!1
16 oveq2 a=m+1n+1a=n+1m+1
17 16 oveq2d a=m+1n!n+1a=n!n+1m+1
18 oveq2 a=m+1n+a=n+m+1
19 18 fveq2d a=m+1n+a!=n+m+1!
20 17 19 oveq12d a=m+1n!n+1an+a!=n!n+1m+1n+m+1!
21 20 mpteq2dv a=m+1nn!n+1an+a!=nn!n+1m+1n+m+1!
22 21 breq1d a=m+1nn!n+1an+a!1nn!n+1m+1n+m+1!1
23 oveq2 a=Mn+1a=n+1M
24 23 oveq2d a=Mn!n+1a=n!n+1M
25 oveq2 a=Mn+a=n+M
26 25 fveq2d a=Mn+a!=n+M!
27 24 26 oveq12d a=Mn!n+1an+a!=n!n+1Mn+M!
28 27 mpteq2dv a=Mnn!n+1an+a!=nn!n+1Mn+M!
29 28 breq1d a=Mnn!n+1an+a!1nn!n+1Mn+M!1
30 nnuz =1
31 1zzd 1
32 nnex V
33 32 mptex nn!n+10n+0!V
34 33 a1i nn!n+10n+0!V
35 1cnd 1
36 fveq2 n=mn!=m!
37 oveq1 n=mn+1=m+1
38 37 oveq1d n=mn+10=m+10
39 36 38 oveq12d n=mn!n+10=m!m+10
40 fvoveq1 n=mn+0!=m+0!
41 39 40 oveq12d n=mn!n+10n+0!=m!m+10m+0!
42 eqid nn!n+10n+0!=nn!n+10n+0!
43 ovex m!m+10m+0!V
44 41 42 43 fvmpt mnn!n+10n+0!m=m!m+10m+0!
45 peano2nn mm+1
46 45 nncnd mm+1
47 46 exp0d mm+10=1
48 47 oveq2d mm!m+10=m!1
49 nnnn0 mm0
50 faccl m0m!
51 49 50 syl mm!
52 51 nncnd mm!
53 52 mulridd mm!1=m!
54 48 53 eqtrd mm!m+10=m!
55 nncn mm
56 55 addridd mm+0=m
57 56 fveq2d mm+0!=m!
58 54 57 oveq12d mm!m+10m+0!=m!m!
59 51 nnne0d mm!0
60 52 59 dividd mm!m!=1
61 44 58 60 3eqtrd mnn!n+10n+0!m=1
62 61 adantl mnn!n+10n+0!m=1
63 30 31 34 35 62 climconst nn!n+10n+0!1
64 63 mptru nn!n+10n+0!1
65 1zzd m0nn!n+1mn+m!11
66 simpr m0nn!n+1mn+m!1nn!n+1mn+m!1
67 32 mptex nn!n+1m+1n+m+1!V
68 67 a1i m0nn!n+1mn+m!1nn!n+1m+1n+m+1!V
69 1zzd m01
70 1cnd m01
71 nn0p1nn m0m+1
72 71 nnzd m0m+1
73 32 mptex nn+1n+m+1V
74 73 a1i m0nn+1n+m+1V
75 oveq1 n=kn+1=k+1
76 oveq1 n=kn+m+1=k+m+1
77 75 76 oveq12d n=kn+1n+m+1=k+1k+m+1
78 eqid nn+1n+m+1=nn+1n+m+1
79 ovex k+1k+m+1V
80 77 78 79 fvmpt knn+1n+m+1k=k+1k+m+1
81 80 adantl m0knn+1n+m+1k=k+1k+m+1
82 30 69 70 72 74 81 divcnvlin m0nn+1n+m+11
83 82 adantr m0nn!n+1mn+m!1nn+1n+m+11
84 simpr m0nn
85 84 nnnn0d m0nn0
86 faccl n0n!
87 85 86 syl m0nn!
88 peano2nn nn+1
89 nnexpcl n+1m0n+1m
90 88 89 sylan nm0n+1m
91 90 ancoms m0nn+1m
92 87 91 nnmulcld m0nn!n+1m
93 92 nnred m0nn!n+1m
94 nnnn0addcl nm0n+m
95 94 ancoms m0nn+m
96 95 nnnn0d m0nn+m0
97 faccl n+m0n+m!
98 96 97 syl m0nn+m!
99 93 98 nndivred m0nn!n+1mn+m!
100 99 recnd m0nn!n+1mn+m!
101 100 fmpttd m0nn!n+1mn+m!:
102 101 ffvelcdmda m0knn!n+1mn+m!k
103 102 adantlr m0nn!n+1mn+m!1knn!n+1mn+m!k
104 88 adantl m0nn+1
105 104 nnred m0nn+1
106 71 adantr m0nm+1
107 84 106 nnaddcld m0nn+m+1
108 105 107 nndivred m0nn+1n+m+1
109 108 recnd m0nn+1n+m+1
110 109 fmpttd m0nn+1n+m+1:
111 110 ffvelcdmda m0knn+1n+m+1k
112 111 adantlr m0nn!n+1mn+m!1knn+1n+m+1k
113 peano2nn kk+1
114 113 adantl m0kk+1
115 114 nncnd m0kk+1
116 simpl m0km0
117 115 116 expp1d m0kk+1m+1=k+1mk+1
118 117 oveq2d m0kk!k+1m+1=k!k+1mk+1
119 simpr m0kk
120 119 nnnn0d m0kk0
121 faccl k0k!
122 120 121 syl m0kk!
123 122 nncnd m0kk!
124 nnexpcl k+1m0k+1m
125 113 124 sylan km0k+1m
126 125 ancoms m0kk+1m
127 126 nncnd m0kk+1m
128 123 127 115 mulassd m0kk!k+1mk+1=k!k+1mk+1
129 118 128 eqtr4d m0kk!k+1m+1=k!k+1mk+1
130 120 116 nn0addcld m0kk+m0
131 facp1 k+m0k+m+1!=k+m!k+m+1
132 130 131 syl m0kk+m+1!=k+m!k+m+1
133 119 nncnd m0kk
134 116 nn0cnd m0km
135 1cnd m0k1
136 133 134 135 addassd m0kk+m+1=k+m+1
137 136 fveq2d m0kk+m+1!=k+m+1!
138 136 oveq2d m0kk+m!k+m+1=k+m!k+m+1
139 132 137 138 3eqtr3d m0kk+m+1!=k+m!k+m+1
140 129 139 oveq12d m0kk!k+1m+1k+m+1!=k!k+1mk+1k+m!k+m+1
141 122 126 nnmulcld m0kk!k+1m
142 141 nncnd m0kk!k+1m
143 faccl k+m0k+m!
144 130 143 syl m0kk+m!
145 144 nncnd m0kk+m!
146 71 adantr m0km+1
147 119 146 nnaddcld m0kk+m+1
148 147 nncnd m0kk+m+1
149 144 nnne0d m0kk+m!0
150 147 nnne0d m0kk+m+10
151 142 145 115 148 149 150 divmuldivd m0kk!k+1mk+m!k+1k+m+1=k!k+1mk+1k+m!k+m+1
152 140 151 eqtr4d m0kk!k+1m+1k+m+1!=k!k+1mk+m!k+1k+m+1
153 fveq2 n=kn!=k!
154 75 oveq1d n=kn+1m+1=k+1m+1
155 153 154 oveq12d n=kn!n+1m+1=k!k+1m+1
156 fvoveq1 n=kn+m+1!=k+m+1!
157 155 156 oveq12d n=kn!n+1m+1n+m+1!=k!k+1m+1k+m+1!
158 eqid nn!n+1m+1n+m+1!=nn!n+1m+1n+m+1!
159 ovex k!k+1m+1k+m+1!V
160 157 158 159 fvmpt knn!n+1m+1n+m+1!k=k!k+1m+1k+m+1!
161 160 adantl m0knn!n+1m+1n+m+1!k=k!k+1m+1k+m+1!
162 75 oveq1d n=kn+1m=k+1m
163 153 162 oveq12d n=kn!n+1m=k!k+1m
164 fvoveq1 n=kn+m!=k+m!
165 163 164 oveq12d n=kn!n+1mn+m!=k!k+1mk+m!
166 eqid nn!n+1mn+m!=nn!n+1mn+m!
167 ovex k!k+1mk+m!V
168 165 166 167 fvmpt knn!n+1mn+m!k=k!k+1mk+m!
169 168 80 oveq12d knn!n+1mn+m!knn+1n+m+1k=k!k+1mk+m!k+1k+m+1
170 169 adantl m0knn!n+1mn+m!knn+1n+m+1k=k!k+1mk+m!k+1k+m+1
171 152 161 170 3eqtr4d m0knn!n+1m+1n+m+1!k=nn!n+1mn+m!knn+1n+m+1k
172 171 adantlr m0nn!n+1mn+m!1knn!n+1m+1n+m+1!k=nn!n+1mn+m!knn+1n+m+1k
173 30 65 66 68 83 103 112 172 climmul m0nn!n+1mn+m!1nn!n+1m+1n+m+1!11
174 1t1e1 11=1
175 173 174 breqtrdi m0nn!n+1mn+m!1nn!n+1m+1n+m+1!1
176 175 ex m0nn!n+1mn+m!1nn!n+1m+1n+m+1!1
177 8 15 22 29 64 176 nn0ind M0nn!n+1Mn+M!1
178 1 177 eqbrtrid M0F1