| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
|
| 2 |
1
|
anbi2d |
|
| 3 |
|
fveq2 |
|
| 4 |
3
|
breq2d |
|
| 5 |
2 4
|
imbi12d |
|
| 6 |
|
breq2 |
|
| 7 |
6
|
anbi2d |
|
| 8 |
|
fveq2 |
|
| 9 |
8
|
breq2d |
|
| 10 |
7 9
|
imbi12d |
|
| 11 |
|
breq2 |
|
| 12 |
11
|
anbi2d |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
breq2d |
|
| 15 |
12 14
|
imbi12d |
|
| 16 |
|
breq2 |
|
| 17 |
16
|
anbi2d |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
breq2d |
|
| 20 |
17 19
|
imbi12d |
|
| 21 |
|
nn0le0eq0 |
|
| 22 |
21
|
biimpa |
|
| 23 |
22
|
fveq2d |
|
| 24 |
|
fac0 |
|
| 25 |
|
1re |
|
| 26 |
24 25
|
eqeltri |
|
| 27 |
26
|
leidi |
|
| 28 |
23 27
|
eqbrtrdi |
|
| 29 |
|
impexp |
|
| 30 |
|
nn0re |
|
| 31 |
|
nn0re |
|
| 32 |
|
peano2re |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
leloe |
|
| 35 |
30 33 34
|
syl2an |
|
| 36 |
|
nn0leltp1 |
|
| 37 |
|
faccl |
|
| 38 |
37
|
nnred |
|
| 39 |
37
|
nnnn0d |
|
| 40 |
39
|
nn0ge0d |
|
| 41 |
|
nn0p1nn |
|
| 42 |
41
|
nnge1d |
|
| 43 |
38 33 40 42
|
lemulge11d |
|
| 44 |
|
facp1 |
|
| 45 |
43 44
|
breqtrrd |
|
| 46 |
45
|
adantl |
|
| 47 |
|
faccl |
|
| 48 |
47
|
nnred |
|
| 49 |
48
|
adantr |
|
| 50 |
38
|
adantl |
|
| 51 |
|
peano2nn0 |
|
| 52 |
51
|
faccld |
|
| 53 |
52
|
nnred |
|
| 54 |
53
|
adantl |
|
| 55 |
|
letr |
|
| 56 |
49 50 54 55
|
syl3anc |
|
| 57 |
46 56
|
mpan2d |
|
| 58 |
57
|
imim2d |
|
| 59 |
58
|
com23 |
|
| 60 |
36 59
|
sylbird |
|
| 61 |
|
fveq2 |
|
| 62 |
48
|
leidd |
|
| 63 |
|
breq2 |
|
| 64 |
62 63
|
syl5ibcom |
|
| 65 |
61 64
|
syl5 |
|
| 66 |
65
|
adantr |
|
| 67 |
66
|
a1dd |
|
| 68 |
60 67
|
jaod |
|
| 69 |
35 68
|
sylbid |
|
| 70 |
69
|
ex |
|
| 71 |
70
|
com13 |
|
| 72 |
71
|
com4l |
|
| 73 |
72
|
a2d |
|
| 74 |
73
|
imp4a |
|
| 75 |
29 74
|
biimtrid |
|
| 76 |
5 10 15 20 28 75
|
nn0ind |
|
| 77 |
76
|
3impib |
|
| 78 |
77
|
3com12 |
|