Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Factorial function
facwordi
Next ⟩
faclbnd
Metamath Proof Explorer
Ascii
Unicode
Theorem
facwordi
Description:
Ordering property of factorial.
(Contributed by
NM
, 9-Dec-2005)
Ref
Expression
Assertion
facwordi
⊢
M
∈
ℕ
0
∧
N
∈
ℕ
0
∧
M
≤
N
→
M
!
≤
N
!
Proof
Step
Hyp
Ref
Expression
1
breq2
⊢
j
=
0
→
M
≤
j
↔
M
≤
0
2
1
anbi2d
⊢
j
=
0
→
M
∈
ℕ
0
∧
M
≤
j
↔
M
∈
ℕ
0
∧
M
≤
0
3
fveq2
⊢
j
=
0
→
j
!
=
0
!
4
3
breq2d
⊢
j
=
0
→
M
!
≤
j
!
↔
M
!
≤
0
!
5
2
4
imbi12d
⊢
j
=
0
→
M
∈
ℕ
0
∧
M
≤
j
→
M
!
≤
j
!
↔
M
∈
ℕ
0
∧
M
≤
0
→
M
!
≤
0
!
6
breq2
⊢
j
=
k
→
M
≤
j
↔
M
≤
k
7
6
anbi2d
⊢
j
=
k
→
M
∈
ℕ
0
∧
M
≤
j
↔
M
∈
ℕ
0
∧
M
≤
k
8
fveq2
⊢
j
=
k
→
j
!
=
k
!
9
8
breq2d
⊢
j
=
k
→
M
!
≤
j
!
↔
M
!
≤
k
!
10
7
9
imbi12d
⊢
j
=
k
→
M
∈
ℕ
0
∧
M
≤
j
→
M
!
≤
j
!
↔
M
∈
ℕ
0
∧
M
≤
k
→
M
!
≤
k
!
11
breq2
⊢
j
=
k
+
1
→
M
≤
j
↔
M
≤
k
+
1
12
11
anbi2d
⊢
j
=
k
+
1
→
M
∈
ℕ
0
∧
M
≤
j
↔
M
∈
ℕ
0
∧
M
≤
k
+
1
13
fveq2
⊢
j
=
k
+
1
→
j
!
=
k
+
1
!
14
13
breq2d
⊢
j
=
k
+
1
→
M
!
≤
j
!
↔
M
!
≤
k
+
1
!
15
12
14
imbi12d
⊢
j
=
k
+
1
→
M
∈
ℕ
0
∧
M
≤
j
→
M
!
≤
j
!
↔
M
∈
ℕ
0
∧
M
≤
k
+
1
→
M
!
≤
k
+
1
!
16
breq2
⊢
j
=
N
→
M
≤
j
↔
M
≤
N
17
16
anbi2d
⊢
j
=
N
→
M
∈
ℕ
0
∧
M
≤
j
↔
M
∈
ℕ
0
∧
M
≤
N
18
fveq2
⊢
j
=
N
→
j
!
=
N
!
19
18
breq2d
⊢
j
=
N
→
M
!
≤
j
!
↔
M
!
≤
N
!
20
17
19
imbi12d
⊢
j
=
N
→
M
∈
ℕ
0
∧
M
≤
j
→
M
!
≤
j
!
↔
M
∈
ℕ
0
∧
M
≤
N
→
M
!
≤
N
!
21
nn0le0eq0
⊢
M
∈
ℕ
0
→
M
≤
0
↔
M
=
0
22
21
biimpa
⊢
M
∈
ℕ
0
∧
M
≤
0
→
M
=
0
23
22
fveq2d
⊢
M
∈
ℕ
0
∧
M
≤
0
→
M
!
=
0
!
24
fac0
⊢
0
!
=
1
25
1re
⊢
1
∈
ℝ
26
24
25
eqeltri
⊢
0
!
∈
ℝ
27
26
leidi
⊢
0
!
≤
0
!
28
23
27
eqbrtrdi
⊢
M
∈
ℕ
0
∧
M
≤
0
→
M
!
≤
0
!
29
impexp
⊢
M
∈
ℕ
0
∧
M
≤
k
→
M
!
≤
k
!
↔
M
∈
ℕ
0
→
M
≤
k
→
M
!
≤
k
!
30
nn0re
⊢
M
∈
ℕ
0
→
M
∈
ℝ
31
nn0re
⊢
k
∈
ℕ
0
→
k
∈
ℝ
32
peano2re
⊢
k
∈
ℝ
→
k
+
1
∈
ℝ
33
31
32
syl
⊢
k
∈
ℕ
0
→
k
+
1
∈
ℝ
34
leloe
⊢
M
∈
ℝ
∧
k
+
1
∈
ℝ
→
M
≤
k
+
1
↔
M
<
k
+
1
∨
M
=
k
+
1
35
30
33
34
syl2an
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
≤
k
+
1
↔
M
<
k
+
1
∨
M
=
k
+
1
36
nn0leltp1
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
≤
k
↔
M
<
k
+
1
37
faccl
⊢
k
∈
ℕ
0
→
k
!
∈
ℕ
38
37
nnred
⊢
k
∈
ℕ
0
→
k
!
∈
ℝ
39
37
nnnn0d
⊢
k
∈
ℕ
0
→
k
!
∈
ℕ
0
40
39
nn0ge0d
⊢
k
∈
ℕ
0
→
0
≤
k
!
41
nn0p1nn
⊢
k
∈
ℕ
0
→
k
+
1
∈
ℕ
42
41
nnge1d
⊢
k
∈
ℕ
0
→
1
≤
k
+
1
43
38
33
40
42
lemulge11d
⊢
k
∈
ℕ
0
→
k
!
≤
k
!
k
+
1
44
facp1
⊢
k
∈
ℕ
0
→
k
+
1
!
=
k
!
k
+
1
45
43
44
breqtrrd
⊢
k
∈
ℕ
0
→
k
!
≤
k
+
1
!
46
45
adantl
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
k
!
≤
k
+
1
!
47
faccl
⊢
M
∈
ℕ
0
→
M
!
∈
ℕ
48
47
nnred
⊢
M
∈
ℕ
0
→
M
!
∈
ℝ
49
48
adantr
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
!
∈
ℝ
50
38
adantl
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
k
!
∈
ℝ
51
peano2nn0
⊢
k
∈
ℕ
0
→
k
+
1
∈
ℕ
0
52
51
faccld
⊢
k
∈
ℕ
0
→
k
+
1
!
∈
ℕ
53
52
nnred
⊢
k
∈
ℕ
0
→
k
+
1
!
∈
ℝ
54
53
adantl
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
k
+
1
!
∈
ℝ
55
letr
⊢
M
!
∈
ℝ
∧
k
!
∈
ℝ
∧
k
+
1
!
∈
ℝ
→
M
!
≤
k
!
∧
k
!
≤
k
+
1
!
→
M
!
≤
k
+
1
!
56
49
50
54
55
syl3anc
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
!
≤
k
!
∧
k
!
≤
k
+
1
!
→
M
!
≤
k
+
1
!
57
46
56
mpan2d
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
!
≤
k
!
→
M
!
≤
k
+
1
!
58
57
imim2d
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
≤
k
→
M
!
≤
k
!
→
M
≤
k
→
M
!
≤
k
+
1
!
59
58
com23
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
≤
k
→
M
≤
k
→
M
!
≤
k
!
→
M
!
≤
k
+
1
!
60
36
59
sylbird
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
<
k
+
1
→
M
≤
k
→
M
!
≤
k
!
→
M
!
≤
k
+
1
!
61
fveq2
⊢
M
=
k
+
1
→
M
!
=
k
+
1
!
62
48
leidd
⊢
M
∈
ℕ
0
→
M
!
≤
M
!
63
breq2
⊢
M
!
=
k
+
1
!
→
M
!
≤
M
!
↔
M
!
≤
k
+
1
!
64
62
63
syl5ibcom
⊢
M
∈
ℕ
0
→
M
!
=
k
+
1
!
→
M
!
≤
k
+
1
!
65
61
64
syl5
⊢
M
∈
ℕ
0
→
M
=
k
+
1
→
M
!
≤
k
+
1
!
66
65
adantr
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
=
k
+
1
→
M
!
≤
k
+
1
!
67
66
a1dd
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
=
k
+
1
→
M
≤
k
→
M
!
≤
k
!
→
M
!
≤
k
+
1
!
68
60
67
jaod
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
<
k
+
1
∨
M
=
k
+
1
→
M
≤
k
→
M
!
≤
k
!
→
M
!
≤
k
+
1
!
69
35
68
sylbid
⊢
M
∈
ℕ
0
∧
k
∈
ℕ
0
→
M
≤
k
+
1
→
M
≤
k
→
M
!
≤
k
!
→
M
!
≤
k
+
1
!
70
69
ex
⊢
M
∈
ℕ
0
→
k
∈
ℕ
0
→
M
≤
k
+
1
→
M
≤
k
→
M
!
≤
k
!
→
M
!
≤
k
+
1
!
71
70
com13
⊢
M
≤
k
+
1
→
k
∈
ℕ
0
→
M
∈
ℕ
0
→
M
≤
k
→
M
!
≤
k
!
→
M
!
≤
k
+
1
!
72
71
com4l
⊢
k
∈
ℕ
0
→
M
∈
ℕ
0
→
M
≤
k
→
M
!
≤
k
!
→
M
≤
k
+
1
→
M
!
≤
k
+
1
!
73
72
a2d
⊢
k
∈
ℕ
0
→
M
∈
ℕ
0
→
M
≤
k
→
M
!
≤
k
!
→
M
∈
ℕ
0
→
M
≤
k
+
1
→
M
!
≤
k
+
1
!
74
73
imp4a
⊢
k
∈
ℕ
0
→
M
∈
ℕ
0
→
M
≤
k
→
M
!
≤
k
!
→
M
∈
ℕ
0
∧
M
≤
k
+
1
→
M
!
≤
k
+
1
!
75
29
74
biimtrid
⊢
k
∈
ℕ
0
→
M
∈
ℕ
0
∧
M
≤
k
→
M
!
≤
k
!
→
M
∈
ℕ
0
∧
M
≤
k
+
1
→
M
!
≤
k
+
1
!
76
5
10
15
20
28
75
nn0ind
⊢
N
∈
ℕ
0
→
M
∈
ℕ
0
∧
M
≤
N
→
M
!
≤
N
!
77
76
3impib
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
M
≤
N
→
M
!
≤
N
!
78
77
3com12
⊢
M
∈
ℕ
0
∧
N
∈
ℕ
0
∧
M
≤
N
→
M
!
≤
N
!