| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
1
|
fclscmpi |
|
| 3 |
2
|
ralrimiva |
|
| 4 |
|
toponuni |
|
| 5 |
4
|
fveq2d |
|
| 6 |
5
|
raleqdv |
|
| 7 |
3 6
|
imbitrrid |
|
| 8 |
|
elpwi |
|
| 9 |
|
vn0 |
|
| 10 |
|
simpr |
|
| 11 |
10
|
inteqd |
|
| 12 |
|
int0 |
|
| 13 |
11 12
|
eqtrdi |
|
| 14 |
13
|
neeq1d |
|
| 15 |
9 14
|
mpbiri |
|
| 16 |
15
|
a1d |
|
| 17 |
|
ssfii |
|
| 18 |
17
|
elv |
|
| 19 |
|
simplrl |
|
| 20 |
1
|
cldss2 |
|
| 21 |
4
|
ad2antrr |
|
| 22 |
21
|
pweqd |
|
| 23 |
20 22
|
sseqtrrid |
|
| 24 |
19 23
|
sstrd |
|
| 25 |
|
simpr |
|
| 26 |
|
simplrr |
|
| 27 |
|
toponmax |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
|
fsubbas |
|
| 30 |
28 29
|
syl |
|
| 31 |
24 25 26 30
|
mpbir3and |
|
| 32 |
|
ssfg |
|
| 33 |
31 32
|
syl |
|
| 34 |
18 33
|
sstrid |
|
| 35 |
34
|
sselda |
|
| 36 |
|
fclssscls |
|
| 37 |
35 36
|
syl |
|
| 38 |
19
|
sselda |
|
| 39 |
|
cldcls |
|
| 40 |
38 39
|
syl |
|
| 41 |
37 40
|
sseqtrd |
|
| 42 |
41
|
ralrimiva |
|
| 43 |
|
ssint |
|
| 44 |
42 43
|
sylibr |
|
| 45 |
|
fgcl |
|
| 46 |
|
oveq2 |
|
| 47 |
46
|
neeq1d |
|
| 48 |
47
|
rspcv |
|
| 49 |
31 45 48
|
3syl |
|
| 50 |
|
ssn0 |
|
| 51 |
44 49 50
|
syl6an |
|
| 52 |
16 51
|
pm2.61dane |
|
| 53 |
52
|
expr |
|
| 54 |
8 53
|
sylan2 |
|
| 55 |
54
|
com23 |
|
| 56 |
55
|
ralrimdva |
|
| 57 |
|
topontop |
|
| 58 |
|
cmpfi |
|
| 59 |
57 58
|
syl |
|
| 60 |
56 59
|
sylibrd |
|
| 61 |
7 60
|
impbid |
|