Metamath Proof Explorer


Theorem fcoresf1

Description: If a composition is injective, then the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 18-Sep-2024) (Revised by AV, 7-Oct-2024)

Ref Expression
Hypotheses fcores.f φF:AB
fcores.e E=ranFC
fcores.p P=F-1C
fcores.x X=FP
fcores.g φG:CD
fcores.y Y=GE
fcoresf1.i φGF:P1-1D
Assertion fcoresf1 φX:P1-1EY:E1-1D

Proof

Step Hyp Ref Expression
1 fcores.f φF:AB
2 fcores.e E=ranFC
3 fcores.p P=F-1C
4 fcores.x X=FP
5 fcores.g φG:CD
6 fcores.y Y=GE
7 fcoresf1.i φGF:P1-1D
8 1 2 3 4 fcoreslem3 φX:PontoE
9 fof X:PontoEX:PE
10 8 9 syl φX:PE
11 dff13 GF:P1-1DGF:PDxPyPGFx=GFyx=y
12 1 2 3 4 5 6 fcoresf1lem φxPGFx=YXx
13 12 adantrr φxPyPGFx=YXx
14 1 2 3 4 5 6 fcoresf1lem φyPGFy=YXy
15 14 adantrl φxPyPGFy=YXy
16 13 15 eqeq12d φxPyPGFx=GFyYXx=YXy
17 16 imbi1d φxPyPGFx=GFyx=yYXx=YXyx=y
18 fveq2 Xx=XyYXx=YXy
19 18 a1i φxPyPXx=XyYXx=YXy
20 19 imim1d φxPyPYXx=YXyx=yXx=Xyx=y
21 17 20 sylbid φxPyPGFx=GFyx=yXx=Xyx=y
22 21 ralimdvva φxPyPGFx=GFyx=yxPyPXx=Xyx=y
23 22 adantld φGF:PDxPyPGFx=GFyx=yxPyPXx=Xyx=y
24 11 23 biimtrid φGF:P1-1DxPyPXx=Xyx=y
25 7 24 mpd φxPyPXx=Xyx=y
26 dff13 X:P1-1EX:PExPyPXx=Xyx=y
27 10 25 26 sylanbrc φX:P1-1E
28 2 a1i φE=ranFC
29 inss2 ranFCC
30 28 29 eqsstrdi φEC
31 5 30 fssresd φGE:ED
32 6 feq1i Y:EDGE:ED
33 31 32 sylibr φY:ED
34 1 2 3 4 fcoreslem2 φranX=E
35 34 eqcomd φE=ranX
36 35 eleq2d φxExranX
37 fofn X:PontoEXFnP
38 8 37 syl φXFnP
39 fvelrnb XFnPxranXaPXa=x
40 38 39 syl φxranXaPXa=x
41 36 40 bitrd φxEaPXa=x
42 35 eleq2d φyEyranX
43 fvelrnb XFnPyranXbPXb=y
44 38 43 syl φyranXbPXb=y
45 42 44 bitrd φyEbPXb=y
46 41 45 anbi12d φxEyEaPXa=xbPXb=y
47 fveqeq2 x=aGFx=GFyGFa=GFy
48 eqeq1 x=ax=ya=y
49 47 48 imbi12d x=aGFx=GFyx=yGFa=GFya=y
50 fveq2 y=bGFy=GFb
51 50 eqeq2d y=bGFa=GFyGFa=GFb
52 equequ2 y=ba=ya=b
53 51 52 imbi12d y=bGFa=GFya=yGFa=GFba=b
54 49 53 rspc2v aPbPxPyPGFx=GFyx=yGFa=GFba=b
55 54 adantl φaPbPxPyPGFx=GFyx=yGFa=GFba=b
56 1 2 3 4 5 6 fcoresf1lem φaPGFa=YXa
57 56 adantrr φaPbPGFa=YXa
58 1 2 3 4 5 6 fcoresf1lem φbPGFb=YXb
59 58 adantrl φaPbPGFb=YXb
60 57 59 eqeq12d φaPbPGFa=GFbYXa=YXb
61 60 imbi1d φaPbPGFa=GFba=bYXa=YXba=b
62 fveq2 a=bXa=Xb
63 62 a1i φaPbPa=bXa=Xb
64 63 imim2d φaPbPYXa=YXba=bYXa=YXbXa=Xb
65 61 64 sylbid φaPbPGFa=GFba=bYXa=YXbXa=Xb
66 55 65 syld φaPbPxPyPGFx=GFyx=yYXa=YXbXa=Xb
67 66 ex φaPbPxPyPGFx=GFyx=yYXa=YXbXa=Xb
68 67 com23 φxPyPGFx=GFyx=yaPbPYXa=YXbXa=Xb
69 68 adantld φGF:PDxPyPGFx=GFyx=yaPbPYXa=YXbXa=Xb
70 11 69 biimtrid φGF:P1-1DaPbPYXa=YXbXa=Xb
71 7 70 mpd φaPbPYXa=YXbXa=Xb
72 71 impl φaPbPYXa=YXbXa=Xb
73 fveq2 Xa=xYXa=Yx
74 fveq2 Xb=yYXb=Yy
75 73 74 eqeqan12rd Xb=yXa=xYXa=YXbYx=Yy
76 eqeq12 Xa=xXb=yXa=Xbx=y
77 76 ancoms Xb=yXa=xXa=Xbx=y
78 75 77 imbi12d Xb=yXa=xYXa=YXbXa=XbYx=Yyx=y
79 72 78 syl5ibcom φaPbPXb=yXa=xYx=Yyx=y
80 79 expd φaPbPXb=yXa=xYx=Yyx=y
81 80 rexlimdva φaPbPXb=yXa=xYx=Yyx=y
82 81 com23 φaPXa=xbPXb=yYx=Yyx=y
83 82 rexlimdva φaPXa=xbPXb=yYx=Yyx=y
84 83 impd φaPXa=xbPXb=yYx=Yyx=y
85 46 84 sylbid φxEyEYx=Yyx=y
86 85 ralrimivv φxEyEYx=Yyx=y
87 dff13 Y:E1-1DY:EDxEyEYx=Yyx=y
88 33 86 87 sylanbrc φY:E1-1D
89 27 88 jca φX:P1-1EY:E1-1D