| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fcores.f |  | 
						
							| 2 |  | fcores.e |  | 
						
							| 3 |  | fcores.p |  | 
						
							| 4 |  | fcores.x |  | 
						
							| 5 |  | fcores.g |  | 
						
							| 6 |  | fcores.y |  | 
						
							| 7 |  | fcoresf1.i |  | 
						
							| 8 | 1 2 3 4 | fcoreslem3 |  | 
						
							| 9 |  | fof |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 |  | dff13 |  | 
						
							| 12 | 1 2 3 4 5 6 | fcoresf1lem |  | 
						
							| 13 | 12 | adantrr |  | 
						
							| 14 | 1 2 3 4 5 6 | fcoresf1lem |  | 
						
							| 15 | 14 | adantrl |  | 
						
							| 16 | 13 15 | eqeq12d |  | 
						
							| 17 | 16 | imbi1d |  | 
						
							| 18 |  | fveq2 |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 | 19 | imim1d |  | 
						
							| 21 | 17 20 | sylbid |  | 
						
							| 22 | 21 | ralimdvva |  | 
						
							| 23 | 22 | adantld |  | 
						
							| 24 | 11 23 | biimtrid |  | 
						
							| 25 | 7 24 | mpd |  | 
						
							| 26 |  | dff13 |  | 
						
							| 27 | 10 25 26 | sylanbrc |  | 
						
							| 28 | 2 | a1i |  | 
						
							| 29 |  | inss2 |  | 
						
							| 30 | 28 29 | eqsstrdi |  | 
						
							| 31 | 5 30 | fssresd |  | 
						
							| 32 | 6 | feq1i |  | 
						
							| 33 | 31 32 | sylibr |  | 
						
							| 34 | 1 2 3 4 | fcoreslem2 |  | 
						
							| 35 | 34 | eqcomd |  | 
						
							| 36 | 35 | eleq2d |  | 
						
							| 37 |  | fofn |  | 
						
							| 38 | 8 37 | syl |  | 
						
							| 39 |  | fvelrnb |  | 
						
							| 40 | 38 39 | syl |  | 
						
							| 41 | 36 40 | bitrd |  | 
						
							| 42 | 35 | eleq2d |  | 
						
							| 43 |  | fvelrnb |  | 
						
							| 44 | 38 43 | syl |  | 
						
							| 45 | 42 44 | bitrd |  | 
						
							| 46 | 41 45 | anbi12d |  | 
						
							| 47 |  | fveqeq2 |  | 
						
							| 48 |  | eqeq1 |  | 
						
							| 49 | 47 48 | imbi12d |  | 
						
							| 50 |  | fveq2 |  | 
						
							| 51 | 50 | eqeq2d |  | 
						
							| 52 |  | equequ2 |  | 
						
							| 53 | 51 52 | imbi12d |  | 
						
							| 54 | 49 53 | rspc2v |  | 
						
							| 55 | 54 | adantl |  | 
						
							| 56 | 1 2 3 4 5 6 | fcoresf1lem |  | 
						
							| 57 | 56 | adantrr |  | 
						
							| 58 | 1 2 3 4 5 6 | fcoresf1lem |  | 
						
							| 59 | 58 | adantrl |  | 
						
							| 60 | 57 59 | eqeq12d |  | 
						
							| 61 | 60 | imbi1d |  | 
						
							| 62 |  | fveq2 |  | 
						
							| 63 | 62 | a1i |  | 
						
							| 64 | 63 | imim2d |  | 
						
							| 65 | 61 64 | sylbid |  | 
						
							| 66 | 55 65 | syld |  | 
						
							| 67 | 66 | ex |  | 
						
							| 68 | 67 | com23 |  | 
						
							| 69 | 68 | adantld |  | 
						
							| 70 | 11 69 | biimtrid |  | 
						
							| 71 | 7 70 | mpd |  | 
						
							| 72 | 71 | impl |  | 
						
							| 73 |  | fveq2 |  | 
						
							| 74 |  | fveq2 |  | 
						
							| 75 | 73 74 | eqeqan12rd |  | 
						
							| 76 |  | eqeq12 |  | 
						
							| 77 | 76 | ancoms |  | 
						
							| 78 | 75 77 | imbi12d |  | 
						
							| 79 | 72 78 | syl5ibcom |  | 
						
							| 80 | 79 | expd |  | 
						
							| 81 | 80 | rexlimdva |  | 
						
							| 82 | 81 | com23 |  | 
						
							| 83 | 82 | rexlimdva |  | 
						
							| 84 | 83 | impd |  | 
						
							| 85 | 46 84 | sylbid |  | 
						
							| 86 | 85 | ralrimivv |  | 
						
							| 87 |  | dff13 |  | 
						
							| 88 | 33 86 87 | sylanbrc |  | 
						
							| 89 | 27 88 | jca |  |