Description: Lemma for fin23lem22 . (Contributed by Stefan O'Rear, 1-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | fin23lem23 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem26 | |
|
2 | ensym | |
|
3 | entr | |
|
4 | 2 3 | sylan2 | |
5 | simpl | |
|
6 | simprl | |
|
7 | 5 6 | sseldd | |
8 | nnfi | |
|
9 | inss1 | |
|
10 | ssfi | |
|
11 | 8 9 10 | sylancl | |
12 | 7 11 | syl | |
13 | simprr | |
|
14 | 5 13 | sseldd | |
15 | nnfi | |
|
16 | inss1 | |
|
17 | ssfi | |
|
18 | 15 16 17 | sylancl | |
19 | 14 18 | syl | |
20 | nnord | |
|
21 | nnord | |
|
22 | ordtri2or2 | |
|
23 | 20 21 22 | syl2an | |
24 | 7 14 23 | syl2anc | |
25 | ssrin | |
|
26 | ssrin | |
|
27 | 25 26 | orim12i | |
28 | 24 27 | syl | |
29 | fin23lem25 | |
|
30 | 12 19 28 29 | syl3anc | |
31 | ordom | |
|
32 | fin23lem24 | |
|
33 | 31 32 | mpanl1 | |
34 | 30 33 | bitrd | |
35 | 4 34 | imbitrid | |
36 | 35 | ralrimivva | |
37 | 36 | ad2antrr | |
38 | ineq1 | |
|
39 | 38 | breq1d | |
40 | 39 | reu4 | |
41 | 1 37 40 | sylanbrc | |