| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isros.1 |
|
| 2 |
|
fiunelros.1 |
|
| 3 |
|
fiunelros.2 |
|
| 4 |
|
fiunelros.3 |
|
| 5 |
|
simpr |
|
| 6 |
5
|
nnred |
|
| 7 |
6
|
leidd |
|
| 8 |
|
breq1 |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
iuneq1d |
|
| 11 |
10
|
eleq1d |
|
| 12 |
8 11
|
imbi12d |
|
| 13 |
|
breq1 |
|
| 14 |
|
oveq2 |
|
| 15 |
14
|
iuneq1d |
|
| 16 |
15
|
eleq1d |
|
| 17 |
13 16
|
imbi12d |
|
| 18 |
|
breq1 |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
iuneq1d |
|
| 21 |
20
|
eleq1d |
|
| 22 |
18 21
|
imbi12d |
|
| 23 |
|
breq1 |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
iuneq1d |
|
| 26 |
25
|
eleq1d |
|
| 27 |
23 26
|
imbi12d |
|
| 28 |
|
fzo0 |
|
| 29 |
|
iuneq1 |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
|
0iun |
|
| 32 |
30 31
|
eqtri |
|
| 33 |
1
|
0elros |
|
| 34 |
2 33
|
syl |
|
| 35 |
32 34
|
eqeltrid |
|
| 36 |
35
|
a1d |
|
| 37 |
|
simpllr |
|
| 38 |
|
fzosplitsn |
|
| 39 |
|
nnuz |
|
| 40 |
38 39
|
eleq2s |
|
| 41 |
40
|
iuneq1d |
|
| 42 |
37 41
|
syl |
|
| 43 |
|
iunxun |
|
| 44 |
42 43
|
eqtrdi |
|
| 45 |
2
|
ad3antrrr |
|
| 46 |
37
|
nnred |
|
| 47 |
3
|
ad3antrrr |
|
| 48 |
47
|
nnred |
|
| 49 |
|
simpr |
|
| 50 |
|
nnltp1le |
|
| 51 |
37 47 50
|
syl2anc |
|
| 52 |
49 51
|
mpbird |
|
| 53 |
46 48 52
|
ltled |
|
| 54 |
|
simplr |
|
| 55 |
53 54
|
mpd |
|
| 56 |
|
nfcsb1v |
|
| 57 |
|
csbeq1a |
|
| 58 |
56 57
|
iunxsngf |
|
| 59 |
37 58
|
syl |
|
| 60 |
|
simplll |
|
| 61 |
|
elfzo1 |
|
| 62 |
37 47 52 61
|
syl3anbrc |
|
| 63 |
|
nfv |
|
| 64 |
|
nfcv |
|
| 65 |
56 64
|
nfel |
|
| 66 |
63 65
|
nfim |
|
| 67 |
|
eleq1w |
|
| 68 |
67
|
anbi2d |
|
| 69 |
57
|
eleq1d |
|
| 70 |
68 69
|
imbi12d |
|
| 71 |
66 70 4
|
chvarfv |
|
| 72 |
60 62 71
|
syl2anc |
|
| 73 |
59 72
|
eqeltrd |
|
| 74 |
1
|
unelros |
|
| 75 |
45 55 73 74
|
syl3anc |
|
| 76 |
44 75
|
eqeltrd |
|
| 77 |
76
|
ex |
|
| 78 |
12 17 22 27 36 77
|
nnindd |
|
| 79 |
7 78
|
mpd |
|
| 80 |
3 79
|
mpdan |
|