Metamath Proof Explorer


Theorem fiunelros

Description: A ring of sets is closed under finite union. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Hypotheses isros.1 Q=s𝒫𝒫O|sxsysxysxys
fiunelros.1 φSQ
fiunelros.2 φN
fiunelros.3 φk1..^NBS
Assertion fiunelros φk1..^NBS

Proof

Step Hyp Ref Expression
1 isros.1 Q=s𝒫𝒫O|sxsysxysxys
2 fiunelros.1 φSQ
3 fiunelros.2 φN
4 fiunelros.3 φk1..^NBS
5 simpr φNN
6 5 nnred φNN
7 6 leidd φNNN
8 breq1 n=1nN1N
9 oveq2 n=11..^n=1..^1
10 9 iuneq1d n=1k1..^nB=k1..^1B
11 10 eleq1d n=1k1..^nBSk1..^1BS
12 8 11 imbi12d n=1nNk1..^nBS1Nk1..^1BS
13 breq1 n=inNiN
14 oveq2 n=i1..^n=1..^i
15 14 iuneq1d n=ik1..^nB=k1..^iB
16 15 eleq1d n=ik1..^nBSk1..^iBS
17 13 16 imbi12d n=inNk1..^nBSiNk1..^iBS
18 breq1 n=i+1nNi+1N
19 oveq2 n=i+11..^n=1..^i+1
20 19 iuneq1d n=i+1k1..^nB=k1..^i+1B
21 20 eleq1d n=i+1k1..^nBSk1..^i+1BS
22 18 21 imbi12d n=i+1nNk1..^nBSi+1Nk1..^i+1BS
23 breq1 n=NnNNN
24 oveq2 n=N1..^n=1..^N
25 24 iuneq1d n=Nk1..^nB=k1..^NB
26 25 eleq1d n=Nk1..^nBSk1..^NBS
27 23 26 imbi12d n=NnNk1..^nBSNNk1..^NBS
28 fzo0 1..^1=
29 iuneq1 1..^1=k1..^1B=kB
30 28 29 ax-mp k1..^1B=kB
31 0iun kB=
32 30 31 eqtri k1..^1B=
33 1 0elros SQS
34 2 33 syl φS
35 32 34 eqeltrid φk1..^1BS
36 35 a1d φ1Nk1..^1BS
37 simpllr φiiNk1..^iBSi+1Ni
38 fzosplitsn i11..^i+1=1..^ii
39 nnuz =1
40 38 39 eleq2s i1..^i+1=1..^ii
41 40 iuneq1d ik1..^i+1B=k1..^iiB
42 37 41 syl φiiNk1..^iBSi+1Nk1..^i+1B=k1..^iiB
43 iunxun k1..^iiB=k1..^iBkiB
44 42 43 eqtrdi φiiNk1..^iBSi+1Nk1..^i+1B=k1..^iBkiB
45 2 ad3antrrr φiiNk1..^iBSi+1NSQ
46 37 nnred φiiNk1..^iBSi+1Ni
47 3 ad3antrrr φiiNk1..^iBSi+1NN
48 47 nnred φiiNk1..^iBSi+1NN
49 simpr φiiNk1..^iBSi+1Ni+1N
50 nnltp1le iNi<Ni+1N
51 37 47 50 syl2anc φiiNk1..^iBSi+1Ni<Ni+1N
52 49 51 mpbird φiiNk1..^iBSi+1Ni<N
53 46 48 52 ltled φiiNk1..^iBSi+1NiN
54 simplr φiiNk1..^iBSi+1NiNk1..^iBS
55 53 54 mpd φiiNk1..^iBSi+1Nk1..^iBS
56 nfcsb1v _ki/kB
57 csbeq1a k=iB=i/kB
58 56 57 iunxsngf ikiB=i/kB
59 37 58 syl φiiNk1..^iBSi+1NkiB=i/kB
60 simplll φiiNk1..^iBSi+1Nφ
61 elfzo1 i1..^NiNi<N
62 37 47 52 61 syl3anbrc φiiNk1..^iBSi+1Ni1..^N
63 nfv kφi1..^N
64 nfcv _kS
65 56 64 nfel ki/kBS
66 63 65 nfim kφi1..^Ni/kBS
67 eleq1w k=ik1..^Ni1..^N
68 67 anbi2d k=iφk1..^Nφi1..^N
69 57 eleq1d k=iBSi/kBS
70 68 69 imbi12d k=iφk1..^NBSφi1..^Ni/kBS
71 66 70 4 chvarfv φi1..^Ni/kBS
72 60 62 71 syl2anc φiiNk1..^iBSi+1Ni/kBS
73 59 72 eqeltrd φiiNk1..^iBSi+1NkiBS
74 1 unelros SQk1..^iBSkiBSk1..^iBkiBS
75 45 55 73 74 syl3anc φiiNk1..^iBSi+1Nk1..^iBkiBS
76 44 75 eqeltrd φiiNk1..^iBSi+1Nk1..^i+1BS
77 76 ex φiiNk1..^iBSi+1Nk1..^i+1BS
78 12 17 22 27 36 77 nnindd φNNNk1..^NBS
79 7 78 mpd φNk1..^NBS
80 3 79 mpdan φk1..^NBS