| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmfnfm.b |
|
| 2 |
|
fmfnfm.l |
|
| 3 |
|
fmfnfm.f |
|
| 4 |
|
fmfnfm.fm |
|
| 5 |
2
|
ad2antrr |
|
| 6 |
|
simplr |
|
| 7 |
|
ffn |
|
| 8 |
|
dffn4 |
|
| 9 |
7 8
|
sylib |
|
| 10 |
|
foima |
|
| 11 |
3 9 10
|
3syl |
|
| 12 |
|
filtop |
|
| 13 |
2 12
|
syl |
|
| 14 |
|
fgcl |
|
| 15 |
|
filtop |
|
| 16 |
1 14 15
|
3syl |
|
| 17 |
|
eqid |
|
| 18 |
17
|
imaelfm |
|
| 19 |
13 1 3 16 18
|
syl31anc |
|
| 20 |
11 19
|
eqeltrrd |
|
| 21 |
4 20
|
sseldd |
|
| 22 |
21
|
ad2antrr |
|
| 23 |
|
filin |
|
| 24 |
5 6 22 23
|
syl3anc |
|
| 25 |
|
simprr |
|
| 26 |
|
elin |
|
| 27 |
|
fvelrnb |
|
| 28 |
3 7 27
|
3syl |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
3
|
ffund |
|
| 31 |
30
|
ad2antrr |
|
| 32 |
|
simprr |
|
| 33 |
3
|
fdmd |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
32 34
|
eleqtrrd |
|
| 36 |
|
fvimacnv |
|
| 37 |
31 35 36
|
syl2anc |
|
| 38 |
|
cnvimass |
|
| 39 |
|
funfvima2 |
|
| 40 |
31 38 39
|
sylancl |
|
| 41 |
|
ssel |
|
| 42 |
41
|
ad2antrl |
|
| 43 |
40 42
|
syld |
|
| 44 |
37 43
|
sylbid |
|
| 45 |
|
eleq1 |
|
| 46 |
|
eleq1 |
|
| 47 |
45 46
|
imbi12d |
|
| 48 |
44 47
|
syl5ibcom |
|
| 49 |
48
|
expr |
|
| 50 |
49
|
rexlimdv |
|
| 51 |
29 50
|
sylbid |
|
| 52 |
51
|
impcomd |
|
| 53 |
52
|
adantrr |
|
| 54 |
26 53
|
biimtrid |
|
| 55 |
54
|
ssrdv |
|
| 56 |
|
filss |
|
| 57 |
5 24 25 55 56
|
syl13anc |
|
| 58 |
57
|
exp32 |
|
| 59 |
|
imaeq2 |
|
| 60 |
59
|
sseq1d |
|
| 61 |
60
|
imbi1d |
|
| 62 |
58 61
|
syl5ibrcom |
|
| 63 |
62
|
rexlimdva |
|