Metamath Proof Explorer


Theorem footexlem2

Description: Lemma for footex . (Contributed by Thierry Arnoux, 19-Oct-2019) (Revised by Thierry Arnoux, 1-Jul-2023)

Ref Expression
Hypotheses isperp.p P=BaseG
isperp.d -˙=distG
isperp.i I=ItvG
isperp.l L=Line𝒢G
isperp.g φG𝒢Tarski
isperp.a φAranL
foot.x φCP
foot.y φ¬CA
footexlem.e φEP
footexlem.f φFP
footexlem.r φRP
footexlem.x φXP
footexlem.y φYP
footexlem.z φZP
footexlem.d φDP
footexlem.1 φA=ELF
footexlem.2 φEF
footexlem.3 φEFIY
footexlem.4 φE-˙Y=E-˙C
footexlem.5 φC=pInv𝒢GRY
footexlem.6 φYEIZ
footexlem.7 φY-˙Z=Y-˙R
footexlem.q φQP
footexlem.8 φYRIQ
footexlem.9 φY-˙Q=Y-˙E
footexlem.10 φYpInv𝒢GZQID
footexlem.11 φY-˙D=Y-˙C
footexlem.12 φD=pInv𝒢GXC
Assertion footexlem2 φCLX𝒢GA

Proof

Step Hyp Ref Expression
1 isperp.p P=BaseG
2 isperp.d -˙=distG
3 isperp.i I=ItvG
4 isperp.l L=Line𝒢G
5 isperp.g φG𝒢Tarski
6 isperp.a φAranL
7 foot.x φCP
8 foot.y φ¬CA
9 footexlem.e φEP
10 footexlem.f φFP
11 footexlem.r φRP
12 footexlem.x φXP
13 footexlem.y φYP
14 footexlem.z φZP
15 footexlem.d φDP
16 footexlem.1 φA=ELF
17 footexlem.2 φEF
18 footexlem.3 φEFIY
19 footexlem.4 φE-˙Y=E-˙C
20 footexlem.5 φC=pInv𝒢GRY
21 footexlem.6 φYEIZ
22 footexlem.7 φY-˙Z=Y-˙R
23 footexlem.q φQP
24 footexlem.8 φYRIQ
25 footexlem.9 φY-˙Q=Y-˙E
26 footexlem.10 φYpInv𝒢GZQID
27 footexlem.11 φY-˙D=Y-˙C
28 footexlem.12 φD=pInv𝒢GXC
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 footexlem1 φXA
30 nelne2 XA¬CAXC
31 29 8 30 syl2anc φXC
32 31 necomd φCX
33 1 3 4 5 7 12 32 tgelrnln φCLXranL
34 1 3 4 5 7 12 32 tglinerflx2 φXCLX
35 34 29 elind φXCLXA
36 1 3 4 5 7 12 32 tglinerflx1 φCCLX
37 17 necomd φFE
38 1 3 4 5 10 9 13 37 18 btwnlng3 φYFLE
39 1 3 4 5 9 10 13 17 38 lncom φYELF
40 39 16 eleqtrrd φYA
41 eqid pInv𝒢G=pInv𝒢G
42 5 adantr φY=XG𝒢Tarski
43 9 adantr φY=XEP
44 13 adantr φY=XYP
45 11 adantr φY=XRP
46 7 adantr φY=XCP
47 eqidd φY=XC=C
48 simpr φY=XY=X
49 eqidd φY=XE=E
50 47 48 49 s3eqd φY=X⟨“CYE”⟩=⟨“CXE”⟩
51 12 adantr φY=XXP
52 14 adantr φY=XZP
53 eqid pInv𝒢GZ=pInv𝒢GZ
54 1 2 3 4 41 5 14 53 23 mircl φpInv𝒢GZQP
55 1 2 3 5 9 13 9 7 19 tgcgrcomlr φY-˙E=C-˙E
56 25 55 eqtr2d φC-˙E=Y-˙Q
57 1 3 4 5 9 10 17 tglinerflx1 φEELF
58 57 16 eleqtrrd φEA
59 nelne2 EA¬CAEC
60 58 8 59 syl2anc φEC
61 60 necomd φCE
62 1 2 3 5 7 9 13 23 56 61 tgcgrneq φYQ
63 62 necomd φQY
64 nelne2 YA¬CAYC
65 40 8 64 syl2anc φYC
66 65 necomd φCY
67 20 66 eqnetrrd φpInv𝒢GRYY
68 eqid pInv𝒢GR=pInv𝒢GR
69 1 2 3 4 41 5 11 68 13 mirinv φpInv𝒢GRY=YR=Y
70 69 necon3bid φpInv𝒢GRYYRY
71 67 70 mpbid φRY
72 1 2 3 4 41 5 11 68 13 mirbtwn φRpInv𝒢GRYIY
73 20 oveq1d φCIY=pInv𝒢GRYIY
74 72 73 eleqtrrd φRCIY
75 1 2 3 5 7 11 13 23 71 74 24 tgbtwnouttr2 φYCIQ
76 1 2 3 5 7 13 23 75 tgbtwncom φYQIC
77 eqid 𝒢G=𝒢G
78 20 oveq2d φE-˙C=E-˙pInv𝒢GRY
79 19 78 eqtrd φE-˙Y=E-˙pInv𝒢GRY
80 1 2 3 4 41 5 9 11 13 israg φ⟨“ERY”⟩𝒢GE-˙Y=E-˙pInv𝒢GRY
81 79 80 mpbird φ⟨“ERY”⟩𝒢G
82 1 2 3 5 11 13 23 24 tgbtwncom φYQIR
83 1 2 3 5 13 23 13 9 25 tgcgrcomlr φQ-˙Y=E-˙Y
84 22 eqcomd φY-˙R=Y-˙Z
85 1 2 3 5 23 9 axtgcgrrflx φQ-˙E=E-˙Q
86 25 eqcomd φY-˙E=Y-˙Q
87 1 2 3 5 23 13 11 9 13 14 9 23 63 82 21 83 84 85 86 axtg5seg φR-˙E=Z-˙Q
88 1 2 3 5 11 9 14 23 87 tgcgrcomlr φE-˙R=Q-˙Z
89 1 2 3 5 13 11 13 14 84 tgcgrcomlr φR-˙Y=Z-˙Y
90 1 2 77 5 9 11 13 23 14 13 88 89 86 trgcgr φ⟨“ERY”⟩𝒢G⟨“QZY”⟩
91 1 2 3 4 41 5 9 11 13 77 23 14 13 81 90 ragcgr φ⟨“QZY”⟩𝒢G
92 1 2 3 4 41 5 23 14 13 91 ragcom φ⟨“YZQ”⟩𝒢G
93 1 2 3 4 41 5 13 14 23 israg φ⟨“YZQ”⟩𝒢GY-˙Q=Y-˙pInv𝒢GZQ
94 92 93 mpbid φY-˙Q=Y-˙pInv𝒢GZQ
95 1 2 3 5 13 23 13 54 94 tgcgrcomlr φQ-˙Y=pInv𝒢GZQ-˙Y
96 27 eqcomd φY-˙C=Y-˙D
97 1 2 3 4 41 5 14 53 23 mircgr φZ-˙pInv𝒢GZQ=Z-˙Q
98 97 eqcomd φZ-˙Q=Z-˙pInv𝒢GZQ
99 1 2 3 5 14 23 14 54 98 tgcgrcomlr φQ-˙Z=pInv𝒢GZQ-˙Z
100 eqidd φY-˙Z=Y-˙Z
101 1 2 3 5 23 13 7 54 13 15 14 14 63 76 26 95 96 99 100 axtg5seg φC-˙Z=D-˙Z
102 1 2 3 5 7 14 15 14 101 tgcgrcomlr φZ-˙C=Z-˙D
103 28 oveq2d φZ-˙D=Z-˙pInv𝒢GXC
104 102 103 eqtrd φZ-˙C=Z-˙pInv𝒢GXC
105 1 2 3 4 41 5 14 12 7 israg φ⟨“ZXC”⟩𝒢GZ-˙C=Z-˙pInv𝒢GXC
106 104 105 mpbird φ⟨“ZXC”⟩𝒢G
107 106 adantr φY=X⟨“ZXC”⟩𝒢G
108 71 necomd φYR
109 1 2 3 5 13 11 13 14 84 108 tgcgrneq φYZ
110 109 necomd φZY
111 110 adantr φY=XZY
112 111 48 neeqtrd φY=XZX
113 19 eqcomd φE-˙C=E-˙Y
114 113 adantr φY=XE-˙C=E-˙Y
115 60 adantr φY=XEC
116 1 2 3 42 43 46 43 44 114 115 tgcgrneq φY=XEY
117 116 necomd φY=XYE
118 1 2 3 5 9 7 9 13 113 60 tgcgrneq φEY
119 1 3 4 5 9 13 14 118 21 btwnlng3 φZELY
120 119 adantr φY=XZELY
121 1 3 4 42 44 43 52 117 120 lncom φY=XZYLE
122 48 oveq1d φY=XYLE=XLE
123 121 122 eleqtrd φY=XZXLE
124 123 orcd φY=XZXLEX=E
125 1 2 3 4 41 42 52 51 46 43 107 112 124 ragcol φY=X⟨“EXC”⟩𝒢G
126 1 2 3 4 41 42 43 51 46 125 ragcom φY=X⟨“CXE”⟩𝒢G
127 50 126 eqeltrd φY=X⟨“CYE”⟩𝒢G
128 66 adantr φY=XCY
129 1 2 3 5 7 11 13 74 tgbtwncom φRYIC
130 1 4 3 5 13 11 7 129 btwncolg3 φCYLRY=R
131 130 adantr φY=XCYLRY=R
132 1 2 3 4 41 42 46 44 43 45 127 128 131 ragcol φY=X⟨“RYE”⟩𝒢G
133 1 2 3 4 41 42 45 44 43 132 ragcom φY=X⟨“EYR”⟩𝒢G
134 81 adantr φY=X⟨“ERY”⟩𝒢G
135 1 2 3 4 41 42 43 44 45 133 134 ragflat φY=XY=R
136 108 adantr φY=XYR
137 136 neneqd φY=X¬Y=R
138 135 137 pm2.65da φ¬Y=X
139 138 neqned φYX
140 28 oveq2d φY-˙D=Y-˙pInv𝒢GXC
141 96 140 eqtrd φY-˙C=Y-˙pInv𝒢GXC
142 1 2 3 4 41 5 13 12 7 israg φ⟨“YXC”⟩𝒢GY-˙C=Y-˙pInv𝒢GXC
143 141 142 mpbird φ⟨“YXC”⟩𝒢G
144 1 2 3 4 41 5 13 12 7 143 ragcom φ⟨“CXY”⟩𝒢G
145 1 2 3 4 5 33 6 35 36 40 32 139 144 ragperp φCLX𝒢GA