Metamath Proof Explorer


Theorem fourierdlem14

Description: Given the partition V , Q is the partition shifted to the left by X . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem14.1 φA
fourierdlem14.2 φB
fourierdlem14.x φX
fourierdlem14.p P=mp0m|p0=A+Xpm=B+Xi0..^mpi<pi+1
fourierdlem14.o O=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem14.m φM
fourierdlem14.v φVPM
fourierdlem14.q Q=i0MViX
Assertion fourierdlem14 φQOM

Proof

Step Hyp Ref Expression
1 fourierdlem14.1 φA
2 fourierdlem14.2 φB
3 fourierdlem14.x φX
4 fourierdlem14.p P=mp0m|p0=A+Xpm=B+Xi0..^mpi<pi+1
5 fourierdlem14.o O=mp0m|p0=Apm=Bi0..^mpi<pi+1
6 fourierdlem14.m φM
7 fourierdlem14.v φVPM
8 fourierdlem14.q Q=i0MViX
9 4 fourierdlem2 MVPMV0MV0=A+XVM=B+Xi0..^MVi<Vi+1
10 6 9 syl φVPMV0MV0=A+XVM=B+Xi0..^MVi<Vi+1
11 7 10 mpbid φV0MV0=A+XVM=B+Xi0..^MVi<Vi+1
12 11 simpld φV0M
13 elmapi V0MV:0M
14 12 13 syl φV:0M
15 14 ffvelcdmda φi0MVi
16 3 adantr φi0MX
17 15 16 resubcld φi0MViX
18 17 8 fmptd φQ:0M
19 reex V
20 19 a1i φV
21 ovex 0MV
22 21 a1i φ0MV
23 20 22 elmapd φQ0MQ:0M
24 18 23 mpbird φQ0M
25 8 a1i φQ=i0MViX
26 fveq2 i=0Vi=V0
27 26 oveq1d i=0ViX=V0X
28 27 adantl φi=0ViX=V0X
29 0zd φ0
30 6 nnzd φM
31 0le0 00
32 31 a1i φ00
33 0red φ0
34 6 nnred φM
35 6 nngt0d φ0<M
36 33 34 35 ltled φ0M
37 29 30 29 32 36 elfzd φ00M
38 14 37 ffvelcdmd φV0
39 38 3 resubcld φV0X
40 25 28 37 39 fvmptd φQ0=V0X
41 11 simprd φV0=A+XVM=B+Xi0..^MVi<Vi+1
42 41 simpld φV0=A+XVM=B+X
43 42 simpld φV0=A+X
44 43 oveq1d φV0X=A+X-X
45 1 recnd φA
46 3 recnd φX
47 45 46 pncand φA+X-X=A
48 40 44 47 3eqtrd φQ0=A
49 fveq2 i=MVi=VM
50 49 oveq1d i=MViX=VMX
51 50 adantl φi=MViX=VMX
52 34 leidd φMM
53 29 30 30 36 52 elfzd φM0M
54 14 53 ffvelcdmd φVM
55 54 3 resubcld φVMX
56 25 51 53 55 fvmptd φQM=VMX
57 42 simprd φVM=B+X
58 57 oveq1d φVMX=B+X-X
59 2 recnd φB
60 59 46 pncand φB+X-X=B
61 56 58 60 3eqtrd φQM=B
62 48 61 jca φQ0=AQM=B
63 elfzofz i0..^Mi0M
64 63 15 sylan2 φi0..^MVi
65 14 adantr φi0..^MV:0M
66 fzofzp1 i0..^Mi+10M
67 66 adantl φi0..^Mi+10M
68 65 67 ffvelcdmd φi0..^MVi+1
69 3 adantr φi0..^MX
70 41 simprd φi0..^MVi<Vi+1
71 70 r19.21bi φi0..^MVi<Vi+1
72 64 68 69 71 ltsub1dd φi0..^MViX<Vi+1X
73 63 adantl φi0..^Mi0M
74 63 17 sylan2 φi0..^MViX
75 8 fvmpt2 i0MViXQi=ViX
76 73 74 75 syl2anc φi0..^MQi=ViX
77 fveq2 i=jVi=Vj
78 77 oveq1d i=jViX=VjX
79 78 cbvmptv i0MViX=j0MVjX
80 8 79 eqtri Q=j0MVjX
81 80 a1i φi0..^MQ=j0MVjX
82 fveq2 j=i+1Vj=Vi+1
83 82 oveq1d j=i+1VjX=Vi+1X
84 83 adantl φi0..^Mj=i+1VjX=Vi+1X
85 68 69 resubcld φi0..^MVi+1X
86 81 84 67 85 fvmptd φi0..^MQi+1=Vi+1X
87 72 76 86 3brtr4d φi0..^MQi<Qi+1
88 87 ralrimiva φi0..^MQi<Qi+1
89 24 62 88 jca32 φQ0MQ0=AQM=Bi0..^MQi<Qi+1
90 5 fourierdlem2 MQOMQ0MQ0=AQM=Bi0..^MQi<Qi+1
91 6 90 syl φQOMQ0MQ0=AQM=Bi0..^MQi<Qi+1
92 89 91 mpbird φQOM