Metamath Proof Explorer


Theorem fourierdlem14

Description: Given the partition V , Q is the partition shifted to the left by X . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem14.1 φ A
fourierdlem14.2 φ B
fourierdlem14.x φ X
fourierdlem14.p P = m p 0 m | p 0 = A + X p m = B + X i 0 ..^ m p i < p i + 1
fourierdlem14.o O = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem14.m φ M
fourierdlem14.v φ V P M
fourierdlem14.q Q = i 0 M V i X
Assertion fourierdlem14 φ Q O M

Proof

Step Hyp Ref Expression
1 fourierdlem14.1 φ A
2 fourierdlem14.2 φ B
3 fourierdlem14.x φ X
4 fourierdlem14.p P = m p 0 m | p 0 = A + X p m = B + X i 0 ..^ m p i < p i + 1
5 fourierdlem14.o O = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
6 fourierdlem14.m φ M
7 fourierdlem14.v φ V P M
8 fourierdlem14.q Q = i 0 M V i X
9 4 fourierdlem2 M V P M V 0 M V 0 = A + X V M = B + X i 0 ..^ M V i < V i + 1
10 6 9 syl φ V P M V 0 M V 0 = A + X V M = B + X i 0 ..^ M V i < V i + 1
11 7 10 mpbid φ V 0 M V 0 = A + X V M = B + X i 0 ..^ M V i < V i + 1
12 11 simpld φ V 0 M
13 elmapi V 0 M V : 0 M
14 12 13 syl φ V : 0 M
15 14 ffvelrnda φ i 0 M V i
16 3 adantr φ i 0 M X
17 15 16 resubcld φ i 0 M V i X
18 17 8 fmptd φ Q : 0 M
19 reex V
20 19 a1i φ V
21 ovex 0 M V
22 21 a1i φ 0 M V
23 20 22 elmapd φ Q 0 M Q : 0 M
24 18 23 mpbird φ Q 0 M
25 8 a1i φ Q = i 0 M V i X
26 fveq2 i = 0 V i = V 0
27 26 oveq1d i = 0 V i X = V 0 X
28 27 adantl φ i = 0 V i X = V 0 X
29 0zd φ 0
30 6 nnzd φ M
31 29 30 29 3jca φ 0 M 0
32 0le0 0 0
33 32 a1i φ 0 0
34 0red φ 0
35 6 nnred φ M
36 6 nngt0d φ 0 < M
37 34 35 36 ltled φ 0 M
38 31 33 37 jca32 φ 0 M 0 0 0 0 M
39 elfz2 0 0 M 0 M 0 0 0 0 M
40 38 39 sylibr φ 0 0 M
41 14 40 ffvelrnd φ V 0
42 41 3 resubcld φ V 0 X
43 25 28 40 42 fvmptd φ Q 0 = V 0 X
44 11 simprd φ V 0 = A + X V M = B + X i 0 ..^ M V i < V i + 1
45 44 simpld φ V 0 = A + X V M = B + X
46 45 simpld φ V 0 = A + X
47 46 oveq1d φ V 0 X = A + X - X
48 1 recnd φ A
49 3 recnd φ X
50 48 49 pncand φ A + X - X = A
51 43 47 50 3eqtrd φ Q 0 = A
52 fveq2 i = M V i = V M
53 52 oveq1d i = M V i X = V M X
54 53 adantl φ i = M V i X = V M X
55 29 30 30 3jca φ 0 M M
56 35 leidd φ M M
57 55 37 56 jca32 φ 0 M M 0 M M M
58 elfz2 M 0 M 0 M M 0 M M M
59 57 58 sylibr φ M 0 M
60 14 59 ffvelrnd φ V M
61 60 3 resubcld φ V M X
62 25 54 59 61 fvmptd φ Q M = V M X
63 45 simprd φ V M = B + X
64 63 oveq1d φ V M X = B + X - X
65 2 recnd φ B
66 65 49 pncand φ B + X - X = B
67 62 64 66 3eqtrd φ Q M = B
68 51 67 jca φ Q 0 = A Q M = B
69 elfzofz i 0 ..^ M i 0 M
70 69 15 sylan2 φ i 0 ..^ M V i
71 14 adantr φ i 0 ..^ M V : 0 M
72 fzofzp1 i 0 ..^ M i + 1 0 M
73 72 adantl φ i 0 ..^ M i + 1 0 M
74 71 73 ffvelrnd φ i 0 ..^ M V i + 1
75 3 adantr φ i 0 ..^ M X
76 44 simprd φ i 0 ..^ M V i < V i + 1
77 76 r19.21bi φ i 0 ..^ M V i < V i + 1
78 70 74 75 77 ltsub1dd φ i 0 ..^ M V i X < V i + 1 X
79 69 adantl φ i 0 ..^ M i 0 M
80 69 17 sylan2 φ i 0 ..^ M V i X
81 8 fvmpt2 i 0 M V i X Q i = V i X
82 79 80 81 syl2anc φ i 0 ..^ M Q i = V i X
83 fveq2 i = j V i = V j
84 83 oveq1d i = j V i X = V j X
85 84 cbvmptv i 0 M V i X = j 0 M V j X
86 8 85 eqtri Q = j 0 M V j X
87 86 a1i φ i 0 ..^ M Q = j 0 M V j X
88 fveq2 j = i + 1 V j = V i + 1
89 88 oveq1d j = i + 1 V j X = V i + 1 X
90 89 adantl φ i 0 ..^ M j = i + 1 V j X = V i + 1 X
91 74 75 resubcld φ i 0 ..^ M V i + 1 X
92 87 90 73 91 fvmptd φ i 0 ..^ M Q i + 1 = V i + 1 X
93 78 82 92 3brtr4d φ i 0 ..^ M Q i < Q i + 1
94 93 ralrimiva φ i 0 ..^ M Q i < Q i + 1
95 24 68 94 jca32 φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
96 5 fourierdlem2 M Q O M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
97 6 96 syl φ Q O M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
98 95 97 mpbird φ Q O M