Metamath Proof Explorer


Theorem fourierdlem18

Description: The function S is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem18.n φN
fourierdlem18.s S=sππsinN+12s
Assertion fourierdlem18 φS:ππcn

Proof

Step Hyp Ref Expression
1 fourierdlem18.n φN
2 fourierdlem18.s S=sππsinN+12s
3 resincncf sin:cn
4 cncff sin:cnsin:
5 3 4 ax-mp sin:
6 halfre 12
7 6 a1i φ12
8 1 7 readdcld φN+12
9 8 adantr φsππN+12
10 pire π
11 10 renegcli π
12 iccssre ππππ
13 11 10 12 mp2an ππ
14 13 sseli sππs
15 14 adantl φsππs
16 9 15 remulcld φsππN+12s
17 eqid sππN+12s=sππN+12s
18 16 17 fmptd φsππN+12s:ππ
19 fcompt sin:sππN+12s:ππsinsππN+12s=xππsinsππN+12sx
20 5 18 19 sylancr φsinsππN+12s=xππsinsππN+12sx
21 eqidd φxππsππN+12s=sππN+12s
22 oveq2 s=xN+12s=N+12x
23 22 adantl φxππs=xN+12s=N+12x
24 simpr φxππxππ
25 8 adantr φxππN+12
26 13 24 sselid φxππx
27 25 26 remulcld φxππN+12x
28 21 23 24 27 fvmptd φxππsππN+12sx=N+12x
29 28 fveq2d φxππsinsππN+12sx=sinN+12x
30 29 mpteq2dva φxππsinsππN+12sx=xππsinN+12x
31 fvres N+12xsinN+12x=sinN+12x
32 27 31 syl φxππsinN+12x=sinN+12x
33 32 mpteq2dva φxππsinN+12x=xππsinN+12x
34 oveq2 x=sN+12x=N+12s
35 34 fveq2d x=ssinN+12x=sinN+12s
36 35 cbvmptv xππsinN+12x=sππsinN+12s
37 36 a1i φxππsinN+12x=sππsinN+12s
38 30 33 37 3eqtrd φxππsinsππN+12sx=sππsinN+12s
39 2 eqcomi sππsinN+12s=S
40 39 a1i φsππsinN+12s=S
41 20 38 40 3eqtrrd φS=sinsππN+12s
42 ax-resscn
43 13 42 sstri ππ
44 43 a1i φππ
45 1 recnd φN
46 halfcn 12
47 46 a1i φ12
48 45 47 addcld φN+12
49 ssid
50 49 a1i φ
51 44 48 50 constcncfg φsππN+12:ππcn
52 44 50 idcncfg φsππs:ππcn
53 51 52 mulcncf φsππN+12s:ππcn
54 ssid ππππ
55 54 a1i φππππ
56 42 a1i φ
57 17 53 55 56 16 cncfmptssg φsππN+12s:ππcn
58 3 a1i φsin:cn
59 57 58 cncfco φsinsππN+12s:ππcn
60 41 59 eqeltrd φS:ππcn