Metamath Proof Explorer


Theorem fourierdlem18

Description: The function S is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem18.n φ N
fourierdlem18.s S = s π π sin N + 1 2 s
Assertion fourierdlem18 φ S : π π cn

Proof

Step Hyp Ref Expression
1 fourierdlem18.n φ N
2 fourierdlem18.s S = s π π sin N + 1 2 s
3 resincncf sin : cn
4 cncff sin : cn sin :
5 3 4 ax-mp sin :
6 halfre 1 2
7 6 a1i φ 1 2
8 1 7 readdcld φ N + 1 2
9 8 adantr φ s π π N + 1 2
10 pire π
11 10 renegcli π
12 iccssre π π π π
13 11 10 12 mp2an π π
14 13 sseli s π π s
15 14 adantl φ s π π s
16 9 15 remulcld φ s π π N + 1 2 s
17 eqid s π π N + 1 2 s = s π π N + 1 2 s
18 16 17 fmptd φ s π π N + 1 2 s : π π
19 fcompt sin : s π π N + 1 2 s : π π sin s π π N + 1 2 s = x π π sin s π π N + 1 2 s x
20 5 18 19 sylancr φ sin s π π N + 1 2 s = x π π sin s π π N + 1 2 s x
21 eqidd φ x π π s π π N + 1 2 s = s π π N + 1 2 s
22 oveq2 s = x N + 1 2 s = N + 1 2 x
23 22 adantl φ x π π s = x N + 1 2 s = N + 1 2 x
24 simpr φ x π π x π π
25 8 adantr φ x π π N + 1 2
26 13 24 sseldi φ x π π x
27 25 26 remulcld φ x π π N + 1 2 x
28 21 23 24 27 fvmptd φ x π π s π π N + 1 2 s x = N + 1 2 x
29 28 fveq2d φ x π π sin s π π N + 1 2 s x = sin N + 1 2 x
30 29 mpteq2dva φ x π π sin s π π N + 1 2 s x = x π π sin N + 1 2 x
31 fvres N + 1 2 x sin N + 1 2 x = sin N + 1 2 x
32 27 31 syl φ x π π sin N + 1 2 x = sin N + 1 2 x
33 32 mpteq2dva φ x π π sin N + 1 2 x = x π π sin N + 1 2 x
34 oveq2 x = s N + 1 2 x = N + 1 2 s
35 34 fveq2d x = s sin N + 1 2 x = sin N + 1 2 s
36 35 cbvmptv x π π sin N + 1 2 x = s π π sin N + 1 2 s
37 36 a1i φ x π π sin N + 1 2 x = s π π sin N + 1 2 s
38 30 33 37 3eqtrd φ x π π sin s π π N + 1 2 s x = s π π sin N + 1 2 s
39 2 eqcomi s π π sin N + 1 2 s = S
40 39 a1i φ s π π sin N + 1 2 s = S
41 20 38 40 3eqtrrd φ S = sin s π π N + 1 2 s
42 ax-resscn
43 13 42 sstri π π
44 43 a1i φ π π
45 1 recnd φ N
46 halfcn 1 2
47 46 a1i φ 1 2
48 45 47 addcld φ N + 1 2
49 ssid
50 49 a1i φ
51 44 48 50 constcncfg φ s π π N + 1 2 : π π cn
52 44 50 idcncfg φ s π π s : π π cn
53 51 52 mulcncf φ s π π N + 1 2 s : π π cn
54 ssid π π π π
55 54 a1i φ π π π π
56 42 a1i φ
57 17 53 55 56 16 cncfmptssg φ s π π N + 1 2 s : π π cn
58 3 a1i φ sin : cn
59 57 58 cncfco φ sin s π π N + 1 2 s : π π cn
60 41 59 eqeltrd φ S : π π cn