Metamath Proof Explorer


Theorem fourierdlem86

Description: Continuity of O and its limits with respect to the S partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem86.f φF:
fourierdlem86.xre φX
fourierdlem86.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
fourierdlem86.m φM
fourierdlem86.v φVPM
fourierdlem86.fcn φi0..^MFViVi+1:ViVi+1cn
fourierdlem86.r φi0..^MRFViVi+1limVi
fourierdlem86.l φi0..^MLFViVi+1limVi+1
fourierdlem86.a φA
fourierdlem86.b φB
fourierdlem86.altb φA<B
fourierdlem86.ab φABππ
fourierdlem86.n0 φ¬0AB
fourierdlem86.c φC
fourierdlem86.o O=sABFX+sCss2sins2
fourierdlem86.q Q=i0MViX
fourierdlem86.t T=ABranQAB
fourierdlem86.n N=T1
fourierdlem86.s S=ιf|fIsom<,<0NT
fourierdlem86.d D=ifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12
fourierdlem86.e E=ifSj=QUU/iRFX+SjCSjSj2sinSj2
fourierdlem86.u U=ιi0..^M|SjSj+1QiQi+1
Assertion fourierdlem86 φj0..^NDOSjSj+1limSj+1EOSjSj+1limSjOSjSj+1:SjSj+1cn

Proof

Step Hyp Ref Expression
1 fourierdlem86.f φF:
2 fourierdlem86.xre φX
3 fourierdlem86.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
4 fourierdlem86.m φM
5 fourierdlem86.v φVPM
6 fourierdlem86.fcn φi0..^MFViVi+1:ViVi+1cn
7 fourierdlem86.r φi0..^MRFViVi+1limVi
8 fourierdlem86.l φi0..^MLFViVi+1limVi+1
9 fourierdlem86.a φA
10 fourierdlem86.b φB
11 fourierdlem86.altb φA<B
12 fourierdlem86.ab φABππ
13 fourierdlem86.n0 φ¬0AB
14 fourierdlem86.c φC
15 fourierdlem86.o O=sABFX+sCss2sins2
16 fourierdlem86.q Q=i0MViX
17 fourierdlem86.t T=ABranQAB
18 fourierdlem86.n N=T1
19 fourierdlem86.s S=ιf|fIsom<,<0NT
20 fourierdlem86.d D=ifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12
21 fourierdlem86.e E=ifSj=QUU/iRFX+SjCSjSj2sinSj2
22 fourierdlem86.u U=ιi0..^M|SjSj+1QiQi+1
23 2 adantr φj0..^NX
24 4 adantr φj0..^NM
25 5 adantr φj0..^NVPM
26 9 adantr φj0..^NA
27 10 adantr φj0..^NB
28 11 adantr φj0..^NA<B
29 12 adantr φj0..^NABππ
30 simpr φj0..^Nj0..^N
31 biid φj0..^Ni0..^MSjSj+1QiQi+1y0..^MSjSj+1QyQy+1φj0..^Ni0..^MSjSj+1QiQi+1y0..^MSjSj+1QyQy+1
32 23 3 24 25 26 27 28 29 16 17 18 19 30 22 31 fourierdlem50 φj0..^NU0..^MSjSj+1QUQU+1
33 32 simpld φj0..^NU0..^M
34 id φj0..^Nφj0..^N
35 32 simprd φj0..^NSjSj+1QUQU+1
36 34 33 35 jca31 φj0..^Nφj0..^NU0..^MSjSj+1QUQU+1
37 nfv iφj0..^NU0..^MSjSj+1QUQU+1
38 nfv iSj+1=QU+1
39 nfcsb1v _iU/iL
40 nfcv _iFX+Sj+1
41 38 39 40 nfif _iifSj+1=QU+1U/iLFX+Sj+1
42 nfcv _i
43 nfcv _iC
44 41 42 43 nfov _iifSj+1=QU+1U/iLFX+Sj+1C
45 nfcv _i÷
46 nfcv _iSj+1
47 44 45 46 nfov _iifSj+1=QU+1U/iLFX+Sj+1CSj+1
48 nfcv _i×
49 nfcv _iSj+12sinSj+12
50 47 48 49 nfov _iifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12
51 50 nfel1 iifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1
52 nfv iSj=QU
53 nfcsb1v _iU/iR
54 nfcv _iFX+Sj
55 52 53 54 nfif _iifSj=QUU/iRFX+Sj
56 55 42 43 nfov _iifSj=QUU/iRFX+SjC
57 nfcv _iSj
58 56 45 57 nfov _iifSj=QUU/iRFX+SjCSj
59 nfcv _iSj2sinSj2
60 58 48 59 nfov _iifSj=QUU/iRFX+SjCSjSj2sinSj2
61 60 nfel1 iifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSj
62 51 61 nfan iifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSj
63 nfv iOSjSj+1:SjSj+1cn
64 62 63 nfan iifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSjOSjSj+1:SjSj+1cn
65 37 64 nfim iφj0..^NU0..^MSjSj+1QUQU+1ifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSjOSjSj+1:SjSj+1cn
66 eleq1 i=Ui0..^MU0..^M
67 66 anbi2d i=Uφj0..^Ni0..^Mφj0..^NU0..^M
68 fveq2 i=UQi=QU
69 oveq1 i=Ui+1=U+1
70 69 fveq2d i=UQi+1=QU+1
71 68 70 oveq12d i=UQiQi+1=QUQU+1
72 71 sseq2d i=USjSj+1QiQi+1SjSj+1QUQU+1
73 67 72 anbi12d i=Uφj0..^Ni0..^MSjSj+1QiQi+1φj0..^NU0..^MSjSj+1QUQU+1
74 70 eqeq2d i=USj+1=Qi+1Sj+1=QU+1
75 csbeq1a i=UL=U/iL
76 74 75 ifbieq1d i=UifSj+1=Qi+1LFX+Sj+1=ifSj+1=QU+1U/iLFX+Sj+1
77 76 oveq1d i=UifSj+1=Qi+1LFX+Sj+1C=ifSj+1=QU+1U/iLFX+Sj+1C
78 77 oveq1d i=UifSj+1=Qi+1LFX+Sj+1CSj+1=ifSj+1=QU+1U/iLFX+Sj+1CSj+1
79 78 oveq1d i=UifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12=ifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12
80 79 eleq1d i=UifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1
81 68 eqeq2d i=USj=QiSj=QU
82 csbeq1a i=UR=U/iR
83 81 82 ifbieq1d i=UifSj=QiRFX+Sj=ifSj=QUU/iRFX+Sj
84 83 oveq1d i=UifSj=QiRFX+SjC=ifSj=QUU/iRFX+SjC
85 84 oveq1d i=UifSj=QiRFX+SjCSj=ifSj=QUU/iRFX+SjCSj
86 85 oveq1d i=UifSj=QiRFX+SjCSjSj2sinSj2=ifSj=QUU/iRFX+SjCSjSj2sinSj2
87 86 eleq1d i=UifSj=QiRFX+SjCSjSj2sinSj2OSjSj+1limSjifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSj
88 80 87 anbi12d i=UifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QiRFX+SjCSjSj2sinSj2OSjSj+1limSjifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSj
89 88 anbi1d i=UifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QiRFX+SjCSjSj2sinSj2OSjSj+1limSjOSjSj+1:SjSj+1cnifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSjOSjSj+1:SjSj+1cn
90 73 89 imbi12d i=Uφj0..^Ni0..^MSjSj+1QiQi+1ifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QiRFX+SjCSjSj2sinSj2OSjSj+1limSjOSjSj+1:SjSj+1cnφj0..^NU0..^MSjSj+1QUQU+1ifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSjOSjSj+1:SjSj+1cn
91 eqid ifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12=ifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12
92 eqid ifSj=QiRFX+SjCSjSj2sinSj2=ifSj=QiRFX+SjCSjSj2sinSj2
93 biid φj0..^Ni0..^MSjSj+1QiQi+1φj0..^Ni0..^MSjSj+1QiQi+1
94 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 91 92 93 fourierdlem76 φj0..^Ni0..^MSjSj+1QiQi+1ifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QiRFX+SjCSjSj2sinSj2OSjSj+1limSjOSjSj+1:SjSj+1cn
95 65 90 94 vtoclg1f U0..^Mφj0..^NU0..^MSjSj+1QUQU+1ifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSjOSjSj+1:SjSj+1cn
96 33 36 95 sylc φj0..^NifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSjOSjSj+1:SjSj+1cn
97 96 simpld φj0..^NifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1ifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSj
98 97 simpld φj0..^NifSj+1=QU+1U/iLFX+Sj+1CSj+1Sj+12sinSj+12OSjSj+1limSj+1
99 20 98 eqeltrid φj0..^NDOSjSj+1limSj+1
100 97 simprd φj0..^NifSj=QUU/iRFX+SjCSjSj2sinSj2OSjSj+1limSj
101 21 100 eqeltrid φj0..^NEOSjSj+1limSj
102 96 simprd φj0..^NOSjSj+1:SjSj+1cn
103 99 101 102 jca31 φj0..^NDOSjSj+1limSj+1EOSjSj+1limSjOSjSj+1:SjSj+1cn