| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem86.f |  | 
						
							| 2 |  | fourierdlem86.xre |  | 
						
							| 3 |  | fourierdlem86.p |  | 
						
							| 4 |  | fourierdlem86.m |  | 
						
							| 5 |  | fourierdlem86.v |  | 
						
							| 6 |  | fourierdlem86.fcn |  | 
						
							| 7 |  | fourierdlem86.r |  | 
						
							| 8 |  | fourierdlem86.l |  | 
						
							| 9 |  | fourierdlem86.a |  | 
						
							| 10 |  | fourierdlem86.b |  | 
						
							| 11 |  | fourierdlem86.altb |  | 
						
							| 12 |  | fourierdlem86.ab |  | 
						
							| 13 |  | fourierdlem86.n0 |  | 
						
							| 14 |  | fourierdlem86.c |  | 
						
							| 15 |  | fourierdlem86.o |  | 
						
							| 16 |  | fourierdlem86.q |  | 
						
							| 17 |  | fourierdlem86.t |  | 
						
							| 18 |  | fourierdlem86.n |  | 
						
							| 19 |  | fourierdlem86.s |  | 
						
							| 20 |  | fourierdlem86.d |  | 
						
							| 21 |  | fourierdlem86.e |  | 
						
							| 22 |  | fourierdlem86.u |  | 
						
							| 23 | 2 | adantr |  | 
						
							| 24 | 4 | adantr |  | 
						
							| 25 | 5 | adantr |  | 
						
							| 26 | 9 | adantr |  | 
						
							| 27 | 10 | adantr |  | 
						
							| 28 | 11 | adantr |  | 
						
							| 29 | 12 | adantr |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 |  | biid |  | 
						
							| 32 | 23 3 24 25 26 27 28 29 16 17 18 19 30 22 31 | fourierdlem50 |  | 
						
							| 33 | 32 | simpld |  | 
						
							| 34 |  | id |  | 
						
							| 35 | 32 | simprd |  | 
						
							| 36 | 34 33 35 | jca31 |  | 
						
							| 37 |  | nfv |  | 
						
							| 38 |  | nfv |  | 
						
							| 39 |  | nfcsb1v |  | 
						
							| 40 |  | nfcv |  | 
						
							| 41 | 38 39 40 | nfif |  | 
						
							| 42 |  | nfcv |  | 
						
							| 43 |  | nfcv |  | 
						
							| 44 | 41 42 43 | nfov |  | 
						
							| 45 |  | nfcv |  | 
						
							| 46 |  | nfcv |  | 
						
							| 47 | 44 45 46 | nfov |  | 
						
							| 48 |  | nfcv |  | 
						
							| 49 |  | nfcv |  | 
						
							| 50 | 47 48 49 | nfov |  | 
						
							| 51 | 50 | nfel1 |  | 
						
							| 52 |  | nfv |  | 
						
							| 53 |  | nfcsb1v |  | 
						
							| 54 |  | nfcv |  | 
						
							| 55 | 52 53 54 | nfif |  | 
						
							| 56 | 55 42 43 | nfov |  | 
						
							| 57 |  | nfcv |  | 
						
							| 58 | 56 45 57 | nfov |  | 
						
							| 59 |  | nfcv |  | 
						
							| 60 | 58 48 59 | nfov |  | 
						
							| 61 | 60 | nfel1 |  | 
						
							| 62 | 51 61 | nfan |  | 
						
							| 63 |  | nfv |  | 
						
							| 64 | 62 63 | nfan |  | 
						
							| 65 | 37 64 | nfim |  | 
						
							| 66 |  | eleq1 |  | 
						
							| 67 | 66 | anbi2d |  | 
						
							| 68 |  | fveq2 |  | 
						
							| 69 |  | oveq1 |  | 
						
							| 70 | 69 | fveq2d |  | 
						
							| 71 | 68 70 | oveq12d |  | 
						
							| 72 | 71 | sseq2d |  | 
						
							| 73 | 67 72 | anbi12d |  | 
						
							| 74 | 70 | eqeq2d |  | 
						
							| 75 |  | csbeq1a |  | 
						
							| 76 | 74 75 | ifbieq1d |  | 
						
							| 77 | 76 | oveq1d |  | 
						
							| 78 | 77 | oveq1d |  | 
						
							| 79 | 78 | oveq1d |  | 
						
							| 80 | 79 | eleq1d |  | 
						
							| 81 | 68 | eqeq2d |  | 
						
							| 82 |  | csbeq1a |  | 
						
							| 83 | 81 82 | ifbieq1d |  | 
						
							| 84 | 83 | oveq1d |  | 
						
							| 85 | 84 | oveq1d |  | 
						
							| 86 | 85 | oveq1d |  | 
						
							| 87 | 86 | eleq1d |  | 
						
							| 88 | 80 87 | anbi12d |  | 
						
							| 89 | 88 | anbi1d |  | 
						
							| 90 | 73 89 | imbi12d |  | 
						
							| 91 |  | eqid |  | 
						
							| 92 |  | eqid |  | 
						
							| 93 |  | biid |  | 
						
							| 94 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 91 92 93 | fourierdlem76 |  | 
						
							| 95 | 65 90 94 | vtoclg1f |  | 
						
							| 96 | 33 36 95 | sylc |  | 
						
							| 97 | 96 | simpld |  | 
						
							| 98 | 97 | simpld |  | 
						
							| 99 | 20 98 | eqeltrid |  | 
						
							| 100 | 97 | simprd |  | 
						
							| 101 | 21 100 | eqeltrid |  | 
						
							| 102 | 96 | simprd |  | 
						
							| 103 | 99 101 102 | jca31 |  |