Metamath Proof Explorer


Theorem fourierdlem76

Description: Continuity of O and its limits with respect to the S partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem76.f φ F :
fourierdlem76.xre φ X
fourierdlem76.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
fourierdlem76.m φ M
fourierdlem76.v φ V P M
fourierdlem76.fcn φ i 0 ..^ M F V i V i + 1 : V i V i + 1 cn
fourierdlem76.r φ i 0 ..^ M R F V i V i + 1 lim V i
fourierdlem76.l φ i 0 ..^ M L F V i V i + 1 lim V i + 1
fourierdlem76.a φ A
fourierdlem76.b φ B
fourierdlem76.altb φ A < B
fourierdlem76.ab φ A B π π
fourierdlem76.n0 φ ¬ 0 A B
fourierdlem76.c φ C
fourierdlem76.o O = s A B F X + s C s s 2 sin s 2
fourierdlem76.q Q = i 0 M V i X
fourierdlem76.t T = A B ran Q A B
fourierdlem76.n N = T 1
fourierdlem76.s S = ι f | f Isom < , < 0 N T
fourierdlem76.d D = if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2
fourierdlem76.e E = if S j = Q i R F X + S j C S j S j 2 sin S j 2
fourierdlem76.ch χ φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1
Assertion fourierdlem76 φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 D O S j S j + 1 lim S j + 1 E O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn

Proof

Step Hyp Ref Expression
1 fourierdlem76.f φ F :
2 fourierdlem76.xre φ X
3 fourierdlem76.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
4 fourierdlem76.m φ M
5 fourierdlem76.v φ V P M
6 fourierdlem76.fcn φ i 0 ..^ M F V i V i + 1 : V i V i + 1 cn
7 fourierdlem76.r φ i 0 ..^ M R F V i V i + 1 lim V i
8 fourierdlem76.l φ i 0 ..^ M L F V i V i + 1 lim V i + 1
9 fourierdlem76.a φ A
10 fourierdlem76.b φ B
11 fourierdlem76.altb φ A < B
12 fourierdlem76.ab φ A B π π
13 fourierdlem76.n0 φ ¬ 0 A B
14 fourierdlem76.c φ C
15 fourierdlem76.o O = s A B F X + s C s s 2 sin s 2
16 fourierdlem76.q Q = i 0 M V i X
17 fourierdlem76.t T = A B ran Q A B
18 fourierdlem76.n N = T 1
19 fourierdlem76.s S = ι f | f Isom < , < 0 N T
20 fourierdlem76.d D = if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2
21 fourierdlem76.e E = if S j = Q i R F X + S j C S j S j 2 sin S j 2
22 fourierdlem76.ch χ φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1
23 eqid s S j S j + 1 F X + s C s = s S j S j + 1 F X + s C s
24 eqid s S j S j + 1 s 2 sin s 2 = s S j S j + 1 s 2 sin s 2
25 eqid s S j S j + 1 F X + s C s s 2 sin s 2 = s S j S j + 1 F X + s C s s 2 sin s 2
26 simplll φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 φ
27 22 26 sylbi χ φ
28 27 adantr χ s S j S j + 1 φ
29 ioossicc A B A B
30 9 rexrd φ A *
31 27 30 syl χ A *
32 31 adantr χ s S j S j + 1 A *
33 10 rexrd φ B *
34 27 33 syl χ B *
35 34 adantr χ s S j S j + 1 B *
36 elioore s S j S j + 1 s
37 36 adantl χ s S j S j + 1 s
38 27 9 syl χ A
39 38 adantr χ s S j S j + 1 A
40 prfi A B Fin
41 40 a1i φ A B Fin
42 fzfid φ 0 M Fin
43 16 rnmptfi 0 M Fin ran Q Fin
44 infi ran Q Fin ran Q A B Fin
45 42 43 44 3syl φ ran Q A B Fin
46 unfi A B Fin ran Q A B Fin A B ran Q A B Fin
47 41 45 46 syl2anc φ A B ran Q A B Fin
48 17 47 eqeltrid φ T Fin
49 prssg A B A B A B
50 9 10 49 syl2anc φ A B A B
51 9 10 50 mpbi2and φ A B
52 inss2 ran Q A B A B
53 ioossre A B
54 52 53 sstri ran Q A B
55 54 a1i φ ran Q A B
56 51 55 unssd φ A B ran Q A B
57 17 56 eqsstrid φ T
58 48 57 19 18 fourierdlem36 φ S Isom < , < 0 N T
59 27 58 syl χ S Isom < , < 0 N T
60 isof1o S Isom < , < 0 N T S : 0 N 1-1 onto T
61 f1of S : 0 N 1-1 onto T S : 0 N T
62 59 60 61 3syl χ S : 0 N T
63 27 57 syl χ T
64 62 63 fssd χ S : 0 N
65 64 adantr χ s S j S j + 1 S : 0 N
66 simpllr φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 j 0 ..^ N
67 22 66 sylbi χ j 0 ..^ N
68 elfzofz j 0 ..^ N j 0 N
69 67 68 syl χ j 0 N
70 69 adantr χ s S j S j + 1 j 0 N
71 65 70 ffvelrnd χ s S j S j + 1 S j
72 58 60 61 3syl φ S : 0 N T
73 frn S : 0 N T ran S T
74 72 73 syl φ ran S T
75 9 leidd φ A A
76 9 10 11 ltled φ A B
77 9 10 9 75 76 eliccd φ A A B
78 10 leidd φ B B
79 9 10 10 76 78 eliccd φ B A B
80 prssg A B A A B B A B A B A B
81 9 10 80 syl2anc φ A A B B A B A B A B
82 77 79 81 mpbi2and φ A B A B
83 52 29 sstri ran Q A B A B
84 83 a1i φ ran Q A B A B
85 82 84 unssd φ A B ran Q A B A B
86 17 85 eqsstrid φ T A B
87 74 86 sstrd φ ran S A B
88 27 87 syl χ ran S A B
89 ffun S : 0 N Fun S
90 64 89 syl χ Fun S
91 fdm S : 0 N dom S = 0 N
92 64 91 syl χ dom S = 0 N
93 92 eqcomd χ 0 N = dom S
94 69 93 eleqtrd χ j dom S
95 fvelrn Fun S j dom S S j ran S
96 90 94 95 syl2anc χ S j ran S
97 88 96 sseldd χ S j A B
98 iccgelb A * B * S j A B A S j
99 31 34 97 98 syl3anc χ A S j
100 99 adantr χ s S j S j + 1 A S j
101 71 rexrd χ s S j S j + 1 S j *
102 fzofzp1 j 0 ..^ N j + 1 0 N
103 67 102 syl χ j + 1 0 N
104 64 103 ffvelrnd χ S j + 1
105 104 rexrd χ S j + 1 *
106 105 adantr χ s S j S j + 1 S j + 1 *
107 simpr χ s S j S j + 1 s S j S j + 1
108 ioogtlb S j * S j + 1 * s S j S j + 1 S j < s
109 101 106 107 108 syl3anc χ s S j S j + 1 S j < s
110 39 71 37 100 109 lelttrd χ s S j S j + 1 A < s
111 104 adantr χ s S j S j + 1 S j + 1
112 27 10 syl χ B
113 112 adantr χ s S j S j + 1 B
114 iooltub S j * S j + 1 * s S j S j + 1 s < S j + 1
115 101 106 107 114 syl3anc χ s S j S j + 1 s < S j + 1
116 103 93 eleqtrd χ j + 1 dom S
117 fvelrn Fun S j + 1 dom S S j + 1 ran S
118 90 116 117 syl2anc χ S j + 1 ran S
119 88 118 sseldd χ S j + 1 A B
120 iccleub A * B * S j + 1 A B S j + 1 B
121 31 34 119 120 syl3anc χ S j + 1 B
122 121 adantr χ s S j S j + 1 S j + 1 B
123 37 111 113 115 122 ltletrd χ s S j S j + 1 s < B
124 32 35 37 110 123 eliood χ s S j S j + 1 s A B
125 29 124 sselid χ s S j S j + 1 s A B
126 1 adantr φ s A B F :
127 2 adantr φ s A B X
128 9 10 iccssred φ A B
129 128 sselda φ s A B s
130 127 129 readdcld φ s A B X + s
131 126 130 ffvelrnd φ s A B F X + s
132 28 125 131 syl2anc χ s S j S j + 1 F X + s
133 132 recnd χ s S j S j + 1 F X + s
134 14 recnd φ C
135 27 134 syl χ C
136 135 adantr χ s S j S j + 1 C
137 133 136 subcld χ s S j S j + 1 F X + s C
138 ioossre S j S j + 1
139 138 a1i χ S j S j + 1
140 139 sselda χ s S j S j + 1 s
141 140 recnd χ s S j S j + 1 s
142 nne ¬ s 0 s = 0
143 142 biimpi ¬ s 0 s = 0
144 143 eqcomd ¬ s 0 0 = s
145 144 adantl φ s A B ¬ s 0 0 = s
146 simpr φ s A B s A B
147 146 adantr φ s A B ¬ s 0 s A B
148 145 147 eqeltrd φ s A B ¬ s 0 0 A B
149 13 ad2antrr φ s A B ¬ s 0 ¬ 0 A B
150 148 149 condan φ s A B s 0
151 28 125 150 syl2anc χ s S j S j + 1 s 0
152 137 141 151 divcld χ s S j S j + 1 F X + s C s
153 2cnd χ s S j S j + 1 2
154 141 halfcld χ s S j S j + 1 s 2
155 154 sincld χ s S j S j + 1 sin s 2
156 153 155 mulcld χ s S j S j + 1 2 sin s 2
157 36 recnd s S j S j + 1 s
158 157 adantl χ s S j S j + 1 s
159 158 halfcld χ s S j S j + 1 s 2
160 159 sincld χ s S j S j + 1 sin s 2
161 2ne0 2 0
162 161 a1i χ s S j S j + 1 2 0
163 27 12 syl χ A B π π
164 163 adantr χ s S j S j + 1 A B π π
165 164 125 sseldd χ s S j S j + 1 s π π
166 fourierdlem44 s π π s 0 sin s 2 0
167 165 151 166 syl2anc χ s S j S j + 1 sin s 2 0
168 153 160 162 167 mulne0d χ s S j S j + 1 2 sin s 2 0
169 141 156 168 divcld χ s S j S j + 1 s 2 sin s 2
170 eqid s S j S j + 1 F X + s C = s S j S j + 1 F X + s C
171 eqid s S j S j + 1 s = s S j S j + 1 s
172 151 neneqd χ s S j S j + 1 ¬ s = 0
173 velsn s 0 s = 0
174 172 173 sylnibr χ s S j S j + 1 ¬ s 0
175 141 174 eldifd χ s S j S j + 1 s 0
176 eqid s S j S j + 1 F X + s = s S j S j + 1 F X + s
177 eqid s S j S j + 1 C = s S j S j + 1 C
178 elfzofz i 0 ..^ M i 0 M
179 178 adantl φ i 0 ..^ M i 0 M
180 pire π
181 180 renegcli π
182 181 a1i φ π
183 182 2 readdcld φ - π + X
184 180 a1i φ π
185 184 2 readdcld φ π + X
186 183 185 iccssred φ - π + X π + X
187 186 adantr φ i 0 ..^ M - π + X π + X
188 3 4 5 fourierdlem15 φ V : 0 M - π + X π + X
189 188 adantr φ i 0 ..^ M V : 0 M - π + X π + X
190 189 179 ffvelrnd φ i 0 ..^ M V i - π + X π + X
191 187 190 sseldd φ i 0 ..^ M V i
192 2 adantr φ i 0 ..^ M X
193 191 192 resubcld φ i 0 ..^ M V i X
194 16 fvmpt2 i 0 M V i X Q i = V i X
195 179 193 194 syl2anc φ i 0 ..^ M Q i = V i X
196 195 193 eqeltrd φ i 0 ..^ M Q i
197 196 adantlr φ j 0 ..^ N i 0 ..^ M Q i
198 197 adantr φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 Q i
199 22 198 sylbi χ Q i
200 fveq2 i = j V i = V j
201 200 oveq1d i = j V i X = V j X
202 201 cbvmptv i 0 M V i X = j 0 M V j X
203 16 202 eqtri Q = j 0 M V j X
204 203 a1i φ i 0 ..^ M Q = j 0 M V j X
205 fveq2 j = i + 1 V j = V i + 1
206 205 oveq1d j = i + 1 V j X = V i + 1 X
207 206 adantl φ i 0 ..^ M j = i + 1 V j X = V i + 1 X
208 fzofzp1 i 0 ..^ M i + 1 0 M
209 208 adantl φ i 0 ..^ M i + 1 0 M
210 189 209 ffvelrnd φ i 0 ..^ M V i + 1 - π + X π + X
211 187 210 sseldd φ i 0 ..^ M V i + 1
212 211 192 resubcld φ i 0 ..^ M V i + 1 X
213 204 207 209 212 fvmptd φ i 0 ..^ M Q i + 1 = V i + 1 X
214 213 212 eqeltrd φ i 0 ..^ M Q i + 1
215 214 adantlr φ j 0 ..^ N i 0 ..^ M Q i + 1
216 215 adantr φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 Q i + 1
217 22 216 sylbi χ Q i + 1
218 3 fourierdlem2 M V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
219 4 218 syl φ V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
220 5 219 mpbid φ V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
221 220 simprrd φ i 0 ..^ M V i < V i + 1
222 221 r19.21bi φ i 0 ..^ M V i < V i + 1
223 191 211 192 222 ltsub1dd φ i 0 ..^ M V i X < V i + 1 X
224 223 195 213 3brtr4d φ i 0 ..^ M Q i < Q i + 1
225 224 adantlr φ j 0 ..^ N i 0 ..^ M Q i < Q i + 1
226 225 adantr φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 Q i < Q i + 1
227 22 226 sylbi χ Q i < Q i + 1
228 22 biimpi χ φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1
229 228 simplrd χ i 0 ..^ M
230 27 229 191 syl2anc χ V i
231 230 rexrd χ V i *
232 231 adantr χ s Q i Q i + 1 V i *
233 27 229 211 syl2anc χ V i + 1
234 233 rexrd χ V i + 1 *
235 234 adantr χ s Q i Q i + 1 V i + 1 *
236 27 2 syl χ X
237 236 adantr χ s Q i Q i + 1 X
238 elioore s Q i Q i + 1 s
239 238 adantl χ s Q i Q i + 1 s
240 237 239 readdcld χ s Q i Q i + 1 X + s
241 27 229 195 syl2anc χ Q i = V i X
242 241 oveq2d χ X + Q i = X + V i - X
243 236 recnd χ X
244 230 recnd χ V i
245 243 244 pncan3d χ X + V i - X = V i
246 242 245 eqtr2d χ V i = X + Q i
247 246 adantr χ s Q i Q i + 1 V i = X + Q i
248 199 adantr χ s Q i Q i + 1 Q i
249 199 rexrd χ Q i *
250 249 adantr χ s Q i Q i + 1 Q i *
251 217 rexrd χ Q i + 1 *
252 251 adantr χ s Q i Q i + 1 Q i + 1 *
253 simpr χ s Q i Q i + 1 s Q i Q i + 1
254 ioogtlb Q i * Q i + 1 * s Q i Q i + 1 Q i < s
255 250 252 253 254 syl3anc χ s Q i Q i + 1 Q i < s
256 248 239 237 255 ltadd2dd χ s Q i Q i + 1 X + Q i < X + s
257 247 256 eqbrtrd χ s Q i Q i + 1 V i < X + s
258 217 adantr χ s Q i Q i + 1 Q i + 1
259 iooltub Q i * Q i + 1 * s Q i Q i + 1 s < Q i + 1
260 250 252 253 259 syl3anc χ s Q i Q i + 1 s < Q i + 1
261 239 258 237 260 ltadd2dd χ s Q i Q i + 1 X + s < X + Q i + 1
262 27 229 213 syl2anc χ Q i + 1 = V i + 1 X
263 262 oveq2d χ X + Q i + 1 = X + V i + 1 - X
264 233 recnd χ V i + 1
265 243 264 pncan3d χ X + V i + 1 - X = V i + 1
266 263 265 eqtrd χ X + Q i + 1 = V i + 1
267 266 adantr χ s Q i Q i + 1 X + Q i + 1 = V i + 1
268 261 267 breqtrd χ s Q i Q i + 1 X + s < V i + 1
269 232 235 240 257 268 eliood χ s Q i Q i + 1 X + s V i V i + 1
270 fvres X + s V i V i + 1 F V i V i + 1 X + s = F X + s
271 269 270 syl χ s Q i Q i + 1 F V i V i + 1 X + s = F X + s
272 271 eqcomd χ s Q i Q i + 1 F X + s = F V i V i + 1 X + s
273 272 mpteq2dva χ s Q i Q i + 1 F X + s = s Q i Q i + 1 F V i V i + 1 X + s
274 ioosscn V i V i + 1
275 274 a1i χ V i V i + 1
276 27 229 6 syl2anc χ F V i V i + 1 : V i V i + 1 cn
277 ioosscn Q i Q i + 1
278 277 a1i χ Q i Q i + 1
279 275 276 278 243 269 fourierdlem23 χ s Q i Q i + 1 F V i V i + 1 X + s : Q i Q i + 1 cn
280 273 279 eqeltrd χ s Q i Q i + 1 F X + s : Q i Q i + 1 cn
281 27 1 syl χ F :
282 ioossre Q i Q i + 1
283 282 a1i χ Q i Q i + 1
284 eqid s Q i Q i + 1 F X + s = s Q i Q i + 1 F X + s
285 ioossre V i V i + 1
286 285 a1i χ V i V i + 1
287 239 260 ltned χ s Q i Q i + 1 s Q i + 1
288 27 229 8 syl2anc χ L F V i V i + 1 lim V i + 1
289 266 eqcomd χ V i + 1 = X + Q i + 1
290 289 oveq2d χ F V i V i + 1 lim V i + 1 = F V i V i + 1 lim X + Q i + 1
291 288 290 eleqtrd χ L F V i V i + 1 lim X + Q i + 1
292 217 recnd χ Q i + 1
293 281 236 283 284 269 286 287 291 292 fourierdlem53 χ L s Q i Q i + 1 F X + s lim Q i + 1
294 64 69 ffvelrnd χ S j
295 elfzoelz j 0 ..^ N j
296 zre j j
297 67 295 296 3syl χ j
298 297 ltp1d χ j < j + 1
299 isorel S Isom < , < 0 N T j 0 N j + 1 0 N j < j + 1 S j < S j + 1
300 59 69 103 299 syl12anc χ j < j + 1 S j < S j + 1
301 298 300 mpbid χ S j < S j + 1
302 22 simprbi χ S j S j + 1 Q i Q i + 1
303 eqid if S j + 1 = Q i + 1 L s Q i Q i + 1 F X + s S j + 1 = if S j + 1 = Q i + 1 L s Q i Q i + 1 F X + s S j + 1
304 eqid TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 = TopOpen fld 𝑡 Q i Q i + 1 Q i + 1
305 199 217 227 280 293 294 104 301 302 303 304 fourierdlem33 χ if S j + 1 = Q i + 1 L s Q i Q i + 1 F X + s S j + 1 s Q i Q i + 1 F X + s S j S j + 1 lim S j + 1
306 eqidd χ ¬ S j + 1 = Q i + 1 s Q i Q i + 1 F X + s = s Q i Q i + 1 F X + s
307 simpr χ ¬ S j + 1 = Q i + 1 s = S j + 1 s = S j + 1
308 307 oveq2d χ ¬ S j + 1 = Q i + 1 s = S j + 1 X + s = X + S j + 1
309 308 fveq2d χ ¬ S j + 1 = Q i + 1 s = S j + 1 F X + s = F X + S j + 1
310 249 adantr χ ¬ S j + 1 = Q i + 1 Q i *
311 251 adantr χ ¬ S j + 1 = Q i + 1 Q i + 1 *
312 104 adantr χ ¬ S j + 1 = Q i + 1 S j + 1
313 199 217 294 104 301 302 fourierdlem10 χ Q i S j S j + 1 Q i + 1
314 313 simpld χ Q i S j
315 199 294 104 314 301 lelttrd χ Q i < S j + 1
316 315 adantr χ ¬ S j + 1 = Q i + 1 Q i < S j + 1
317 217 adantr χ ¬ S j + 1 = Q i + 1 Q i + 1
318 313 simprd χ S j + 1 Q i + 1
319 318 adantr χ ¬ S j + 1 = Q i + 1 S j + 1 Q i + 1
320 neqne ¬ S j + 1 = Q i + 1 S j + 1 Q i + 1
321 320 necomd ¬ S j + 1 = Q i + 1 Q i + 1 S j + 1
322 321 adantl χ ¬ S j + 1 = Q i + 1 Q i + 1 S j + 1
323 312 317 319 322 leneltd χ ¬ S j + 1 = Q i + 1 S j + 1 < Q i + 1
324 310 311 312 316 323 eliood χ ¬ S j + 1 = Q i + 1 S j + 1 Q i Q i + 1
325 236 104 readdcld χ X + S j + 1
326 281 325 ffvelrnd χ F X + S j + 1
327 326 adantr χ ¬ S j + 1 = Q i + 1 F X + S j + 1
328 306 309 324 327 fvmptd χ ¬ S j + 1 = Q i + 1 s Q i Q i + 1 F X + s S j + 1 = F X + S j + 1
329 328 ifeq2da χ if S j + 1 = Q i + 1 L s Q i Q i + 1 F X + s S j + 1 = if S j + 1 = Q i + 1 L F X + S j + 1
330 302 resmptd χ s Q i Q i + 1 F X + s S j S j + 1 = s S j S j + 1 F X + s
331 330 oveq1d χ s Q i Q i + 1 F X + s S j S j + 1 lim S j + 1 = s S j S j + 1 F X + s lim S j + 1
332 305 329 331 3eltr3d χ if S j + 1 = Q i + 1 L F X + S j + 1 s S j S j + 1 F X + s lim S j + 1
333 ax-resscn
334 139 333 sstrdi χ S j S j + 1
335 104 recnd χ S j + 1
336 177 334 135 335 constlimc χ C s S j S j + 1 C lim S j + 1
337 176 177 170 133 136 332 336 sublimc χ if S j + 1 = Q i + 1 L F X + S j + 1 C s S j S j + 1 F X + s C lim S j + 1
338 334 171 335 idlimc χ S j + 1 s S j S j + 1 s lim S j + 1
339 27 119 jca χ φ S j + 1 A B
340 eleq1 s = S j + 1 s A B S j + 1 A B
341 340 anbi2d s = S j + 1 φ s A B φ S j + 1 A B
342 neeq1 s = S j + 1 s 0 S j + 1 0
343 341 342 imbi12d s = S j + 1 φ s A B s 0 φ S j + 1 A B S j + 1 0
344 343 150 vtoclg S j + 1 φ S j + 1 A B S j + 1 0
345 104 339 344 sylc χ S j + 1 0
346 170 171 23 137 175 337 338 345 151 divlimc χ if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 s S j S j + 1 F X + s C s lim S j + 1
347 eqid s S j S j + 1 2 sin s 2 = s S j S j + 1 2 sin s 2
348 153 160 mulcld χ s S j S j + 1 2 sin s 2
349 168 neneqd χ s S j S j + 1 ¬ 2 sin s 2 = 0
350 2re 2
351 350 a1i χ s S j S j + 1 2
352 36 rehalfcld s S j S j + 1 s 2
353 352 resincld s S j S j + 1 sin s 2
354 353 adantl χ s S j S j + 1 sin s 2
355 351 354 remulcld χ s S j S j + 1 2 sin s 2
356 elsng 2 sin s 2 2 sin s 2 0 2 sin s 2 = 0
357 355 356 syl χ s S j S j + 1 2 sin s 2 0 2 sin s 2 = 0
358 349 357 mtbird χ s S j S j + 1 ¬ 2 sin s 2 0
359 348 358 eldifd χ s S j S j + 1 2 sin s 2 0
360 eqid s S j S j + 1 2 = s S j S j + 1 2
361 eqid s S j S j + 1 sin s 2 = s S j S j + 1 sin s 2
362 2cnd χ 2
363 360 334 362 335 constlimc χ 2 s S j S j + 1 2 lim S j + 1
364 352 ad2antrl χ s S j S j + 1 s 2 S j + 1 2 s 2
365 recn x x
366 365 sincld x sin x
367 366 adantl χ x sin x
368 eqid s S j S j + 1 s 2 = s S j S j + 1 s 2
369 2cn 2
370 eldifsn 2 0 2 2 0
371 369 161 370 mpbir2an 2 0
372 371 a1i χ s S j S j + 1 2 0
373 161 a1i χ 2 0
374 171 360 368 158 372 338 363 373 162 divlimc χ S j + 1 2 s S j S j + 1 s 2 lim S j + 1
375 sinf sin :
376 375 a1i sin :
377 333 a1i
378 376 377 feqresmpt sin = x sin x
379 378 mptru sin = x sin x
380 resincncf sin : cn
381 379 380 eqeltrri x sin x : cn
382 381 a1i χ x sin x : cn
383 104 rehalfcld χ S j + 1 2
384 fveq2 x = S j + 1 2 sin x = sin S j + 1 2
385 382 383 384 cnmptlimc χ sin S j + 1 2 x sin x lim S j + 1 2
386 fveq2 x = s 2 sin x = sin s 2
387 fveq2 s 2 = S j + 1 2 sin s 2 = sin S j + 1 2
388 387 ad2antll χ s S j S j + 1 s 2 = S j + 1 2 sin s 2 = sin S j + 1 2
389 364 367 374 385 386 388 limcco χ sin S j + 1 2 s S j S j + 1 sin s 2 lim S j + 1
390 360 361 347 153 160 363 389 mullimc χ 2 sin S j + 1 2 s S j S j + 1 2 sin s 2 lim S j + 1
391 335 halfcld χ S j + 1 2
392 391 sincld χ sin S j + 1 2
393 163 119 sseldd χ S j + 1 π π
394 fourierdlem44 S j + 1 π π S j + 1 0 sin S j + 1 2 0
395 393 345 394 syl2anc χ sin S j + 1 2 0
396 362 392 373 395 mulne0d χ 2 sin S j + 1 2 0
397 171 347 24 158 359 338 390 396 168 divlimc χ S j + 1 2 sin S j + 1 2 s S j S j + 1 s 2 sin s 2 lim S j + 1
398 23 24 25 152 169 346 397 mullimc χ if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2 s S j S j + 1 F X + s C s s 2 sin s 2 lim S j + 1
399 20 a1i χ D = if S j + 1 = Q i + 1 L F X + S j + 1 C S j + 1 S j + 1 2 sin S j + 1 2
400 15 reseq1i O S j S j + 1 = s A B F X + s C s s 2 sin s 2 S j S j + 1
401 ioossicc S j S j + 1 S j S j + 1
402 iccss A B A S j S j + 1 B S j S j + 1 A B
403 38 112 99 121 402 syl22anc χ S j S j + 1 A B
404 401 403 sstrid χ S j S j + 1 A B
405 404 resmptd χ s A B F X + s C s s 2 sin s 2 S j S j + 1 = s S j S j + 1 F X + s C s s 2 sin s 2
406 400 405 eqtrid χ O S j S j + 1 = s S j S j + 1 F X + s C s s 2 sin s 2
407 406 oveq1d χ O S j S j + 1 lim S j + 1 = s S j S j + 1 F X + s C s s 2 sin s 2 lim S j + 1
408 398 399 407 3eltr4d χ D O S j S j + 1 lim S j + 1
409 22 408 sylbir φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 D O S j S j + 1 lim S j + 1
410 248 255 gtned χ s Q i Q i + 1 s Q i
411 27 229 7 syl2anc χ R F V i V i + 1 lim V i
412 246 oveq2d χ F V i V i + 1 lim V i = F V i V i + 1 lim X + Q i
413 411 412 eleqtrd χ R F V i V i + 1 lim X + Q i
414 199 recnd χ Q i
415 281 236 283 284 269 286 410 413 414 fourierdlem53 χ R s Q i Q i + 1 F X + s lim Q i
416 eqid if S j = Q i R s Q i Q i + 1 F X + s S j = if S j = Q i R s Q i Q i + 1 F X + s S j
417 eqid TopOpen fld 𝑡 Q i Q i + 1 = TopOpen fld 𝑡 Q i Q i + 1
418 199 217 227 280 415 294 104 301 302 416 417 fourierdlem32 χ if S j = Q i R s Q i Q i + 1 F X + s S j s Q i Q i + 1 F X + s S j S j + 1 lim S j
419 eqidd χ ¬ S j = Q i s Q i Q i + 1 F X + s = s Q i Q i + 1 F X + s
420 oveq2 s = S j X + s = X + S j
421 420 fveq2d s = S j F X + s = F X + S j
422 421 adantl χ ¬ S j = Q i s = S j F X + s = F X + S j
423 249 adantr χ ¬ S j = Q i Q i *
424 251 adantr χ ¬ S j = Q i Q i + 1 *
425 294 adantr χ ¬ S j = Q i S j
426 199 adantr χ ¬ S j = Q i Q i
427 314 adantr χ ¬ S j = Q i Q i S j
428 neqne ¬ S j = Q i S j Q i
429 428 adantl χ ¬ S j = Q i S j Q i
430 426 425 427 429 leneltd χ ¬ S j = Q i Q i < S j
431 104 adantr χ ¬ S j = Q i S j + 1
432 217 adantr χ ¬ S j = Q i Q i + 1
433 301 adantr χ ¬ S j = Q i S j < S j + 1
434 318 adantr χ ¬ S j = Q i S j + 1 Q i + 1
435 425 431 432 433 434 ltletrd χ ¬ S j = Q i S j < Q i + 1
436 423 424 425 430 435 eliood χ ¬ S j = Q i S j Q i Q i + 1
437 236 294 readdcld χ X + S j
438 281 437 ffvelrnd χ F X + S j
439 438 adantr χ ¬ S j = Q i F X + S j
440 419 422 436 439 fvmptd χ ¬ S j = Q i s Q i Q i + 1 F X + s S j = F X + S j
441 440 ifeq2da χ if S j = Q i R s Q i Q i + 1 F X + s S j = if S j = Q i R F X + S j
442 330 oveq1d χ s Q i Q i + 1 F X + s S j S j + 1 lim S j = s S j S j + 1 F X + s lim S j
443 418 441 442 3eltr3d χ if S j = Q i R F X + S j s S j S j + 1 F X + s lim S j
444 294 recnd χ S j
445 177 334 135 444 constlimc χ C s S j S j + 1 C lim S j
446 176 177 170 133 136 443 445 sublimc χ if S j = Q i R F X + S j C s S j S j + 1 F X + s C lim S j
447 334 171 444 idlimc χ S j s S j S j + 1 s lim S j
448 27 97 jca χ φ S j A B
449 eleq1 s = S j s A B S j A B
450 449 anbi2d s = S j φ s A B φ S j A B
451 neeq1 s = S j s 0 S j 0
452 450 451 imbi12d s = S j φ s A B s 0 φ S j A B S j 0
453 452 150 vtoclg S j A B φ S j A B S j 0
454 97 448 453 sylc χ S j 0
455 170 171 23 137 175 446 447 454 151 divlimc χ if S j = Q i R F X + S j C S j s S j S j + 1 F X + s C s lim S j
456 360 334 362 444 constlimc χ 2 s S j S j + 1 2 lim S j
457 352 ad2antrl χ s S j S j + 1 s 2 S j 2 s 2
458 171 360 368 158 372 447 456 373 162 divlimc χ S j 2 s S j S j + 1 s 2 lim S j
459 294 rehalfcld χ S j 2
460 fveq2 x = S j 2 sin x = sin S j 2
461 382 459 460 cnmptlimc χ sin S j 2 x sin x lim S j 2
462 fveq2 s 2 = S j 2 sin s 2 = sin S j 2
463 462 ad2antll χ s S j S j + 1 s 2 = S j 2 sin s 2 = sin S j 2
464 457 367 458 461 386 463 limcco χ sin S j 2 s S j S j + 1 sin s 2 lim S j
465 360 361 347 153 160 456 464 mullimc χ 2 sin S j 2 s S j S j + 1 2 sin s 2 lim S j
466 444 halfcld χ S j 2
467 466 sincld χ sin S j 2
468 163 97 sseldd χ S j π π
469 fourierdlem44 S j π π S j 0 sin S j 2 0
470 468 454 469 syl2anc χ sin S j 2 0
471 362 467 373 470 mulne0d χ 2 sin S j 2 0
472 171 347 24 158 359 447 465 471 168 divlimc χ S j 2 sin S j 2 s S j S j + 1 s 2 sin s 2 lim S j
473 23 24 25 152 169 455 472 mullimc χ if S j = Q i R F X + S j C S j S j 2 sin S j 2 s S j S j + 1 F X + s C s s 2 sin s 2 lim S j
474 21 a1i χ E = if S j = Q i R F X + S j C S j S j 2 sin S j 2
475 406 oveq1d χ O S j S j + 1 lim S j = s S j S j + 1 F X + s C s s 2 sin s 2 lim S j
476 473 474 475 3eltr4d χ E O S j S j + 1 lim S j
477 22 476 sylbir φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 E O S j S j + 1 lim S j
478 302 sselda χ s S j S j + 1 s Q i Q i + 1
479 478 272 syldan χ s S j S j + 1 F X + s = F V i V i + 1 X + s
480 479 mpteq2dva χ s S j S j + 1 F X + s = s S j S j + 1 F V i V i + 1 X + s
481 231 adantr χ s S j S j + 1 V i *
482 234 adantr χ s S j S j + 1 V i + 1 *
483 236 adantr χ s S j S j + 1 X
484 483 140 readdcld χ s S j S j + 1 X + s
485 246 adantr χ s S j S j + 1 V i = X + Q i
486 199 adantr χ s S j S j + 1 Q i
487 249 adantr χ s S j S j + 1 Q i *
488 251 adantr χ s S j S j + 1 Q i + 1 *
489 487 488 478 254 syl3anc χ s S j S j + 1 Q i < s
490 486 37 483 489 ltadd2dd χ s S j S j + 1 X + Q i < X + s
491 485 490 eqbrtrd χ s S j S j + 1 V i < X + s
492 217 adantr χ s S j S j + 1 Q i + 1
493 487 488 478 259 syl3anc χ s S j S j + 1 s < Q i + 1
494 37 492 483 493 ltadd2dd χ s S j S j + 1 X + s < X + Q i + 1
495 266 adantr χ s S j S j + 1 X + Q i + 1 = V i + 1
496 494 495 breqtrd χ s S j S j + 1 X + s < V i + 1
497 481 482 484 491 496 eliood χ s S j S j + 1 X + s V i V i + 1
498 275 276 334 243 497 fourierdlem23 χ s S j S j + 1 F V i V i + 1 X + s : S j S j + 1 cn
499 480 498 eqeltrd χ s S j S j + 1 F X + s : S j S j + 1 cn
500 ssid
501 500 a1i χ
502 334 135 501 constcncfg χ s S j S j + 1 C : S j S j + 1 cn
503 499 502 subcncf χ s S j S j + 1 F X + s C : S j S j + 1 cn
504 175 ralrimiva χ s S j S j + 1 s 0
505 dfss3 S j S j + 1 0 s S j S j + 1 s 0
506 504 505 sylibr χ S j S j + 1 0
507 difssd χ 0
508 506 507 idcncfg χ s S j S j + 1 s : S j S j + 1 cn 0
509 503 508 divcncf χ s S j S j + 1 F X + s C s : S j S j + 1 cn
510 334 501 idcncfg χ s S j S j + 1 s : S j S j + 1 cn
511 359 347 fmptd χ s S j S j + 1 2 sin s 2 : S j S j + 1 0
512 334 362 501 constcncfg χ s S j S j + 1 2 : S j S j + 1 cn
513 sincn sin : cn
514 513 a1i χ sin : cn
515 371 a1i χ 2 0
516 334 515 507 constcncfg χ s S j S j + 1 2 : S j S j + 1 cn 0
517 510 516 divcncf χ s S j S j + 1 s 2 : S j S j + 1 cn
518 514 517 cncfmpt1f χ s S j S j + 1 sin s 2 : S j S j + 1 cn
519 512 518 mulcncf χ s S j S j + 1 2 sin s 2 : S j S j + 1 cn
520 cncffvrn 0 s S j S j + 1 2 sin s 2 : S j S j + 1 cn s S j S j + 1 2 sin s 2 : S j S j + 1 cn 0 s S j S j + 1 2 sin s 2 : S j S j + 1 0
521 507 519 520 syl2anc χ s S j S j + 1 2 sin s 2 : S j S j + 1 cn 0 s S j S j + 1 2 sin s 2 : S j S j + 1 0
522 511 521 mpbird χ s S j S j + 1 2 sin s 2 : S j S j + 1 cn 0
523 510 522 divcncf χ s S j S j + 1 s 2 sin s 2 : S j S j + 1 cn
524 509 523 mulcncf χ s S j S j + 1 F X + s C s s 2 sin s 2 : S j S j + 1 cn
525 406 524 eqeltrd χ O S j S j + 1 : S j S j + 1 cn
526 22 525 sylbir φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 O S j S j + 1 : S j S j + 1 cn
527 409 477 526 jca31 φ j 0 ..^ N i 0 ..^ M S j S j + 1 Q i Q i + 1 D O S j S j + 1 lim S j + 1 E O S j S j + 1 lim S j O S j S j + 1 : S j S j + 1 cn