Metamath Proof Explorer


Theorem fprodcnlem

Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021) Avoid ax-mulf . (Revised by GG, 19-Apr-2025)

Ref Expression
Hypotheses fprodcnlem.1 kφ
fprodcnlem.k K=TopOpenfld
fprodcnlem.j φJTopOnX
fprodcnlem.a φAFin
fprodcnlem.b φkAxXBJCnK
fprodcnlem.z φZA
fprodcnlem.w φWAZ
fprodcnlem.p φxXkZBJCnK
Assertion fprodcnlem φxXkZWBJCnK

Proof

Step Hyp Ref Expression
1 fprodcnlem.1 kφ
2 fprodcnlem.k K=TopOpenfld
3 fprodcnlem.j φJTopOnX
4 fprodcnlem.a φAFin
5 fprodcnlem.b φkAxXBJCnK
6 fprodcnlem.z φZA
7 fprodcnlem.w φWAZ
8 fprodcnlem.p φxXkZBJCnK
9 nfv kxX
10 1 9 nfan kφxX
11 nfcsb1v _kW/kB
12 4 6 ssfid φZFin
13 12 adantr φxXZFin
14 7 adantr φxXWAZ
15 14 eldifbd φxX¬WZ
16 6 sselda φkZkA
17 16 adantlr φxXkZkA
18 3 adantr φkAJTopOnX
19 2 cnfldtopon KTopOn
20 19 a1i φkAKTopOn
21 cnf2 JTopOnXKTopOnxXBJCnKxXB:X
22 18 20 5 21 syl3anc φkAxXB:X
23 eqid xXB=xXB
24 23 fmpt xXBxXB:X
25 22 24 sylibr φkAxXB
26 25 adantlr φxXkAxXB
27 simplr φxXkAxX
28 rspa xXBxXB
29 26 27 28 syl2anc φxXkAB
30 17 29 syldan φxXkZB
31 csbeq1a k=WB=W/kB
32 14 eldifad φxXWA
33 nfv kWA
34 10 33 nfan kφxXWA
35 11 nfel1 kW/kB
36 34 35 nfim kφxXWAW/kB
37 eleq1 k=WkAWA
38 37 anbi2d k=WφxXkAφxXWA
39 31 eleq1d k=WBW/kB
40 38 39 imbi12d k=WφxXkABφxXWAW/kB
41 36 40 29 vtoclg1f WAφxXWAW/kB
42 41 anabsi7 φxXWAW/kB
43 32 42 mpdan φxXW/kB
44 10 11 13 14 15 30 31 43 fprodsplitsn φxXkZWB=kZBW/kB
45 44 mpteq2dva φxXkZWB=xXkZBW/kB
46 7 eldifad φWA
47 1 33 nfan kφWA
48 nfcv _kX
49 48 11 nfmpt _kxXW/kB
50 49 nfel1 kxXW/kBJCnK
51 47 50 nfim kφWAxXW/kBJCnK
52 37 anbi2d k=WφkAφWA
53 31 mpteq2dv k=WxXB=xXW/kB
54 53 eleq1d k=WxXBJCnKxXW/kBJCnK
55 52 54 imbi12d k=WφkAxXBJCnKφWAxXW/kBJCnK
56 51 55 5 vtoclg1f WAφWAxXW/kBJCnK
57 56 anabsi7 φWAxXW/kBJCnK
58 46 57 mpdan φxXW/kBJCnK
59 19 a1i φKTopOn
60 2 mpomulcn u,vuvK×tKCnK
61 60 a1i φu,vuvK×tKCnK
62 oveq12 u=kZBv=W/kBuv=kZBW/kB
63 3 8 58 59 59 61 62 cnmpt12 φxXkZBW/kBJCnK
64 45 63 eqeltrd φxXkZWBJCnK