Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021) Avoid ax-mulf . (Revised by GG, 19-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodcnlem.1 | |
|
fprodcnlem.k | |
||
fprodcnlem.j | |
||
fprodcnlem.a | |
||
fprodcnlem.b | |
||
fprodcnlem.z | |
||
fprodcnlem.w | |
||
fprodcnlem.p | |
||
Assertion | fprodcnlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcnlem.1 | |
|
2 | fprodcnlem.k | |
|
3 | fprodcnlem.j | |
|
4 | fprodcnlem.a | |
|
5 | fprodcnlem.b | |
|
6 | fprodcnlem.z | |
|
7 | fprodcnlem.w | |
|
8 | fprodcnlem.p | |
|
9 | nfv | |
|
10 | 1 9 | nfan | |
11 | nfcsb1v | |
|
12 | 4 6 | ssfid | |
13 | 12 | adantr | |
14 | 7 | adantr | |
15 | 14 | eldifbd | |
16 | 6 | sselda | |
17 | 16 | adantlr | |
18 | 3 | adantr | |
19 | 2 | cnfldtopon | |
20 | 19 | a1i | |
21 | cnf2 | |
|
22 | 18 20 5 21 | syl3anc | |
23 | eqid | |
|
24 | 23 | fmpt | |
25 | 22 24 | sylibr | |
26 | 25 | adantlr | |
27 | simplr | |
|
28 | rspa | |
|
29 | 26 27 28 | syl2anc | |
30 | 17 29 | syldan | |
31 | csbeq1a | |
|
32 | 14 | eldifad | |
33 | nfv | |
|
34 | 10 33 | nfan | |
35 | 11 | nfel1 | |
36 | 34 35 | nfim | |
37 | eleq1 | |
|
38 | 37 | anbi2d | |
39 | 31 | eleq1d | |
40 | 38 39 | imbi12d | |
41 | 36 40 29 | vtoclg1f | |
42 | 41 | anabsi7 | |
43 | 32 42 | mpdan | |
44 | 10 11 13 14 15 30 31 43 | fprodsplitsn | |
45 | 44 | mpteq2dva | |
46 | 7 | eldifad | |
47 | 1 33 | nfan | |
48 | nfcv | |
|
49 | 48 11 | nfmpt | |
50 | 49 | nfel1 | |
51 | 47 50 | nfim | |
52 | 37 | anbi2d | |
53 | 31 | mpteq2dv | |
54 | 53 | eleq1d | |
55 | 52 54 | imbi12d | |
56 | 51 55 5 | vtoclg1f | |
57 | 56 | anabsi7 | |
58 | 46 57 | mpdan | |
59 | 19 | a1i | |
60 | 2 | mpomulcn | |
61 | 60 | a1i | |
62 | oveq12 | |
|
63 | 3 8 58 59 59 61 62 | cnmpt12 | |
64 | 45 63 | eqeltrd | |