| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fpropnf1.f |  | 
						
							| 2 |  | id |  | 
						
							| 3 | 2 | 3adant3 |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 |  | id |  | 
						
							| 6 | 5 5 | jca |  | 
						
							| 7 | 6 | 3ad2ant3 |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | simpr |  | 
						
							| 10 | 4 8 9 | 3jca |  | 
						
							| 11 |  | funprg |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 1 | funeqi |  | 
						
							| 14 | 12 13 | sylibr |  | 
						
							| 15 |  | neneq |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 |  | fprg |  | 
						
							| 18 | 10 17 | syl |  | 
						
							| 19 | 1 | eqcomi |  | 
						
							| 20 | 19 | feq1i |  | 
						
							| 21 | 18 20 | sylib |  | 
						
							| 22 |  | df-f1 |  | 
						
							| 23 |  | dff13 |  | 
						
							| 24 |  | fveqeq2 |  | 
						
							| 25 |  | eqeq1 |  | 
						
							| 26 | 24 25 | imbi12d |  | 
						
							| 27 | 26 | ralbidv |  | 
						
							| 28 |  | fveqeq2 |  | 
						
							| 29 |  | eqeq1 |  | 
						
							| 30 | 28 29 | imbi12d |  | 
						
							| 31 | 30 | ralbidv |  | 
						
							| 32 | 27 31 | ralprg |  | 
						
							| 33 | 32 | 3adant3 |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 |  | fveq2 |  | 
						
							| 36 | 35 | eqeq2d |  | 
						
							| 37 |  | eqeq2 |  | 
						
							| 38 | 36 37 | imbi12d |  | 
						
							| 39 |  | fveq2 |  | 
						
							| 40 | 39 | eqeq2d |  | 
						
							| 41 |  | eqeq2 |  | 
						
							| 42 | 40 41 | imbi12d |  | 
						
							| 43 | 38 42 | ralprg |  | 
						
							| 44 | 35 | eqeq2d |  | 
						
							| 45 |  | eqeq2 |  | 
						
							| 46 | 44 45 | imbi12d |  | 
						
							| 47 | 39 | eqeq2d |  | 
						
							| 48 |  | eqeq2 |  | 
						
							| 49 | 47 48 | imbi12d |  | 
						
							| 50 | 46 49 | ralprg |  | 
						
							| 51 | 43 50 | anbi12d |  | 
						
							| 52 | 51 | 3adant3 |  | 
						
							| 53 | 52 | adantr |  | 
						
							| 54 | 1 | fveq1i |  | 
						
							| 55 |  | 3simpb |  | 
						
							| 56 | 55 | anim1i |  | 
						
							| 57 |  | df-3an |  | 
						
							| 58 | 56 57 | sylibr |  | 
						
							| 59 |  | fvpr1g |  | 
						
							| 60 | 58 59 | syl |  | 
						
							| 61 | 54 60 | eqtrid |  | 
						
							| 62 | 1 | fveq1i |  | 
						
							| 63 |  | 3simpc |  | 
						
							| 64 | 63 | anim1i |  | 
						
							| 65 |  | df-3an |  | 
						
							| 66 | 64 65 | sylibr |  | 
						
							| 67 |  | fvpr2g |  | 
						
							| 68 | 66 67 | syl |  | 
						
							| 69 | 62 68 | eqtr2id |  | 
						
							| 70 | 61 69 | eqtrd |  | 
						
							| 71 |  | idd |  | 
						
							| 72 | 70 71 | embantd |  | 
						
							| 73 | 72 | adantld |  | 
						
							| 74 | 73 | adantrd |  | 
						
							| 75 | 53 74 | sylbid |  | 
						
							| 76 | 34 75 | sylbid |  | 
						
							| 77 | 76 | adantld |  | 
						
							| 78 | 23 77 | biimtrid |  | 
						
							| 79 | 22 78 | biimtrrid |  | 
						
							| 80 | 21 79 | mpand |  | 
						
							| 81 | 16 80 | mtod |  | 
						
							| 82 | 14 81 | jca |  |