Metamath Proof Explorer


Theorem frege131d

Description: If F is a function and A contains all elements of U and all elements before or after those elements of U in the transitive closure of F , then the image under F of A is a subclass of A . Similar to Proposition 131 of Frege1879 p. 85. Compare with frege131 . (Contributed by RP, 17-Jul-2020)

Ref Expression
Hypotheses frege131d.f φFV
frege131d.a φA=Ut+F-1Ut+FU
frege131d.fun φFunF
Assertion frege131d φFAA

Proof

Step Hyp Ref Expression
1 frege131d.f φFV
2 frege131d.a φA=Ut+F-1Ut+FU
3 frege131d.fun φFunF
4 trclfvlb FVFt+F
5 imass1 Ft+FFUt+FU
6 1 4 5 3syl φFUt+FU
7 ssun2 t+FUt+F-1Ut+FU
8 ssun2 t+F-1Ut+FUUt+F-1Ut+FU
9 7 8 sstri t+FUUt+F-1Ut+FU
10 6 9 sstrdi φFUUt+F-1Ut+FU
11 trclfvdecomr FVt+F=Ft+FF
12 1 11 syl φt+F=Ft+FF
13 12 cnveqd φt+F-1=Ft+FF-1
14 cnvun Ft+FF-1=F-1t+FF-1
15 cnvco t+FF-1=F-1t+F-1
16 15 uneq2i F-1t+FF-1=F-1F-1t+F-1
17 14 16 eqtri Ft+FF-1=F-1F-1t+F-1
18 13 17 eqtrdi φt+F-1=F-1F-1t+F-1
19 18 coeq2d φFt+F-1=FF-1F-1t+F-1
20 coundi FF-1F-1t+F-1=FF-1FF-1t+F-1
21 funcocnv2 FunFFF-1=IranF
22 3 21 syl φFF-1=IranF
23 coass FF-1t+F-1=FF-1t+F-1
24 23 eqcomi FF-1t+F-1=FF-1t+F-1
25 22 coeq1d φFF-1t+F-1=IranFt+F-1
26 24 25 eqtrid φFF-1t+F-1=IranFt+F-1
27 22 26 uneq12d φFF-1FF-1t+F-1=IranFIranFt+F-1
28 20 27 eqtrid φFF-1F-1t+F-1=IranFIranFt+F-1
29 19 28 eqtrd φFt+F-1=IranFIranFt+F-1
30 29 imaeq1d φFt+F-1U=IranFIranFt+F-1U
31 imaundir IranFIranFt+F-1U=IranFUIranFt+F-1U
32 30 31 eqtrdi φFt+F-1U=IranFUIranFt+F-1U
33 resss IranFI
34 imass1 IranFIIranFUIU
35 33 34 ax-mp IranFUIU
36 imai IU=U
37 35 36 sseqtri IranFUU
38 imaco IranFt+F-1U=IranFt+F-1U
39 imass1 IranFIIranFt+F-1UIt+F-1U
40 33 39 ax-mp IranFt+F-1UIt+F-1U
41 imai It+F-1U=t+F-1U
42 40 41 sseqtri IranFt+F-1Ut+F-1U
43 38 42 eqsstri IranFt+F-1Ut+F-1U
44 unss12 IranFUUIranFt+F-1Ut+F-1UIranFUIranFt+F-1UUt+F-1U
45 37 43 44 mp2an IranFUIranFt+F-1UUt+F-1U
46 ssun1 Ut+F-1UUt+F-1Ut+FU
47 unass Ut+F-1Ut+FU=Ut+F-1Ut+FU
48 46 47 sseqtri Ut+F-1UUt+F-1Ut+FU
49 45 48 sstri IranFUIranFt+F-1UUt+F-1Ut+FU
50 32 49 eqsstrdi φFt+F-1UUt+F-1Ut+FU
51 coss1 Ft+FFt+Ft+Ft+F
52 1 4 51 3syl φFt+Ft+Ft+F
53 trclfvcotrg t+Ft+Ft+F
54 52 53 sstrdi φFt+Ft+F
55 imass1 Ft+Ft+FFt+FUt+FU
56 54 55 syl φFt+FUt+FU
57 56 9 sstrdi φFt+FUUt+F-1Ut+FU
58 50 57 unssd φFt+F-1UFt+FUUt+F-1Ut+FU
59 10 58 unssd φFUFt+F-1UFt+FUUt+F-1Ut+FU
60 2 imaeq2d φFA=FUt+F-1Ut+FU
61 imaundi FUt+F-1Ut+FU=FUFt+F-1Ut+FU
62 imaundi Ft+F-1Ut+FU=Ft+F-1UFt+FU
63 imaco Ft+F-1U=Ft+F-1U
64 63 eqcomi Ft+F-1U=Ft+F-1U
65 imaco Ft+FU=Ft+FU
66 65 eqcomi Ft+FU=Ft+FU
67 64 66 uneq12i Ft+F-1UFt+FU=Ft+F-1UFt+FU
68 62 67 eqtri Ft+F-1Ut+FU=Ft+F-1UFt+FU
69 68 uneq2i FUFt+F-1Ut+FU=FUFt+F-1UFt+FU
70 61 69 eqtri FUt+F-1Ut+FU=FUFt+F-1UFt+FU
71 60 70 eqtrdi φFA=FUFt+F-1UFt+FU
72 59 71 2 3sstr4d φFAA