Metamath Proof Explorer


Theorem frlmup3

Description: The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015)

Ref Expression
Hypotheses frlmup.f F = R freeLMod I
frlmup.b B = Base F
frlmup.c C = Base T
frlmup.v · ˙ = T
frlmup.e E = x B T x · ˙ f A
frlmup.t φ T LMod
frlmup.i φ I X
frlmup.r φ R = Scalar T
frlmup.a φ A : I C
frlmup.k K = LSpan T
Assertion frlmup3 φ ran E = K ran A

Proof

Step Hyp Ref Expression
1 frlmup.f F = R freeLMod I
2 frlmup.b B = Base F
3 frlmup.c C = Base T
4 frlmup.v · ˙ = T
5 frlmup.e E = x B T x · ˙ f A
6 frlmup.t φ T LMod
7 frlmup.i φ I X
8 frlmup.r φ R = Scalar T
9 frlmup.a φ A : I C
10 frlmup.k K = LSpan T
11 1 2 3 4 5 6 7 8 9 frlmup1 φ E F LMHom T
12 eqid Scalar T = Scalar T
13 12 lmodring T LMod Scalar T Ring
14 6 13 syl φ Scalar T Ring
15 8 14 eqeltrd φ R Ring
16 eqid R unitVec I = R unitVec I
17 16 1 2 uvcff R Ring I X R unitVec I : I B
18 15 7 17 syl2anc φ R unitVec I : I B
19 18 frnd φ ran R unitVec I B
20 eqid LSpan F = LSpan F
21 2 20 10 lmhmlsp E F LMHom T ran R unitVec I B E LSpan F ran R unitVec I = K E ran R unitVec I
22 11 19 21 syl2anc φ E LSpan F ran R unitVec I = K E ran R unitVec I
23 2 3 lmhmf E F LMHom T E : B C
24 11 23 syl φ E : B C
25 24 ffnd φ E Fn B
26 fnima E Fn B E B = ran E
27 25 26 syl φ E B = ran E
28 eqid LBasis F = LBasis F
29 1 16 28 frlmlbs R Ring I X ran R unitVec I LBasis F
30 15 7 29 syl2anc φ ran R unitVec I LBasis F
31 2 28 20 lbssp ran R unitVec I LBasis F LSpan F ran R unitVec I = B
32 30 31 syl φ LSpan F ran R unitVec I = B
33 32 eqcomd φ B = LSpan F ran R unitVec I
34 33 imaeq2d φ E B = E LSpan F ran R unitVec I
35 27 34 eqtr3d φ ran E = E LSpan F ran R unitVec I
36 imaco E R unitVec I I = E R unitVec I I
37 9 ffnd φ A Fn I
38 18 ffnd φ R unitVec I Fn I
39 fnco E Fn B R unitVec I Fn I ran R unitVec I B E R unitVec I Fn I
40 25 38 19 39 syl3anc φ E R unitVec I Fn I
41 fvco2 R unitVec I Fn I u I E R unitVec I u = E R unitVec I u
42 38 41 sylan φ u I E R unitVec I u = E R unitVec I u
43 6 adantr φ u I T LMod
44 7 adantr φ u I I X
45 8 adantr φ u I R = Scalar T
46 9 adantr φ u I A : I C
47 simpr φ u I u I
48 1 2 3 4 5 43 44 45 46 47 16 frlmup2 φ u I E R unitVec I u = A u
49 42 48 eqtr2d φ u I A u = E R unitVec I u
50 37 40 49 eqfnfvd φ A = E R unitVec I
51 50 imaeq1d φ A I = E R unitVec I I
52 fnima A Fn I A I = ran A
53 37 52 syl φ A I = ran A
54 51 53 eqtr3d φ E R unitVec I I = ran A
55 fnima R unitVec I Fn I R unitVec I I = ran R unitVec I
56 38 55 syl φ R unitVec I I = ran R unitVec I
57 56 imaeq2d φ E R unitVec I I = E ran R unitVec I
58 36 54 57 3eqtr3a φ ran A = E ran R unitVec I
59 58 fveq2d φ K ran A = K E ran R unitVec I
60 22 35 59 3eqtr4d φ ran E = K ran A