Metamath Proof Explorer


Theorem frobrhm

Description: In a commutative ring with prime characteristic, the Frobenius function F is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024)

Ref Expression
Hypotheses frobrhm.1 B=BaseR
frobrhm.2 P=chrR
frobrhm.3 ×˙=mulGrpR
frobrhm.4 F=xBP×˙x
frobrhm.5 φRCRing
frobrhm.6 φP
Assertion frobrhm φFRRingHomR

Proof

Step Hyp Ref Expression
1 frobrhm.1 B=BaseR
2 frobrhm.2 P=chrR
3 frobrhm.3 ×˙=mulGrpR
4 frobrhm.4 F=xBP×˙x
5 frobrhm.5 φRCRing
6 frobrhm.6 φP
7 eqid 1R=1R
8 eqid R=R
9 5 crngringd φRRing
10 simpr φx=1Rx=1R
11 10 oveq2d φx=1RP×˙x=P×˙1R
12 eqid mulGrpR=mulGrpR
13 12 ringmgp RRingmulGrpRMnd
14 9 13 syl φmulGrpRMnd
15 prmnn PP
16 nnnn0 PP0
17 6 15 16 3syl φP0
18 12 1 mgpbas B=BasemulGrpR
19 12 7 ringidval 1R=0mulGrpR
20 18 3 19 mulgnn0z mulGrpRMndP0P×˙1R=1R
21 14 17 20 syl2anc φP×˙1R=1R
22 21 adantr φx=1RP×˙1R=1R
23 11 22 eqtrd φx=1RP×˙x=1R
24 1 7 ringidcl RRing1RB
25 9 24 syl φ1RB
26 4 23 25 25 fvmptd2 φF1R=1R
27 12 crngmgp RCRingmulGrpRCMnd
28 5 27 syl φmulGrpRCMnd
29 28 adantr φiBjBmulGrpRCMnd
30 17 adantr φiBjBP0
31 simprl φiBjBiB
32 simprr φiBjBjB
33 12 8 mgpplusg R=+mulGrpR
34 18 3 33 mulgnn0di mulGrpRCMndP0iBjBP×˙iRj=P×˙iRP×˙j
35 29 30 31 32 34 syl13anc φiBjBP×˙iRj=P×˙iRP×˙j
36 simpr φiBjBx=iRjx=iRj
37 36 oveq2d φiBjBx=iRjP×˙x=P×˙iRj
38 9 adantr φiBjBRRing
39 1 8 ringcl RRingiBjBiRjB
40 38 31 32 39 syl3anc φiBjBiRjB
41 ovexd φiBjBP×˙iRjV
42 4 37 40 41 fvmptd2 φiBjBFiRj=P×˙iRj
43 simpr φiBjBx=ix=i
44 43 oveq2d φiBjBx=iP×˙x=P×˙i
45 ovexd φiBjBP×˙iV
46 4 44 31 45 fvmptd2 φiBjBFi=P×˙i
47 simpr φiBjBx=jx=j
48 47 oveq2d φiBjBx=jP×˙x=P×˙j
49 ovexd φiBjBP×˙jV
50 4 48 32 49 fvmptd2 φiBjBFj=P×˙j
51 46 50 oveq12d φiBjBFiRFj=P×˙iRP×˙j
52 35 42 51 3eqtr4d φiBjBFiRj=FiRFj
53 eqid +R=+R
54 14 adantr φxBmulGrpRMnd
55 17 adantr φxBP0
56 simpr φxBxB
57 18 3 54 55 56 mulgnn0cld φxBP×˙xB
58 57 4 fmptd φF:BB
59 5 adantr φiBjBRCRing
60 6 adantr φiBjBP
61 1 53 3 2 59 60 31 32 freshmansdream φiBjBP×˙i+Rj=P×˙i+RP×˙j
62 simpr φiBjBx=i+Rjx=i+Rj
63 62 oveq2d φiBjBx=i+RjP×˙x=P×˙i+Rj
64 1 53 ringacl RRingiBjBi+RjB
65 38 31 32 64 syl3anc φiBjBi+RjB
66 ovexd φiBjBP×˙i+RjV
67 4 63 65 66 fvmptd2 φiBjBFi+Rj=P×˙i+Rj
68 46 50 oveq12d φiBjBFi+RFj=P×˙i+RP×˙j
69 61 67 68 3eqtr4d φiBjBFi+Rj=Fi+RFj
70 1 7 7 8 8 9 9 26 52 1 53 53 58 69 isrhmd φFRRingHomR